

Agile Methods and Safety-critical Software

An Analysis Based on the Principles of Agility and Safety

Master Thesis

Christoph Schmiedinger

Submitted in fulfilment of the requirements for the degree of

Master of Science in Engineering (MSc)

University of Applied Science FH Campus Wien

Master Degree Program: Technical Management

Matriculation Number

1110536006

Supervisor:

DI (FH) Hans Tschürtz, MSc, MSc

June 8, 2013

ñIntelligence is the ability to adapt to change.ò

Stephen W. Hawking

Declaration:

ñI confirm that this paper is entirely my own work. All sources and quotations have been

fully acknowledged in the appropriate places with corresponding footnotes and citations.

Quotations have been properly acknowledged and marked with appropriate punctuation.

The works consulted are listed in the bibliography. This paper has not been submitted to

another examination panel in the same or a similar form, and has not been published.ñ

Place, Date Signature

Acknowledgement

iv

Acknowledgement

I would like to thank all the people who supported and inspired me in writing my master

thesis. I am thankful for their constructive criticism, their honest feedback and their

engagement, which helped me to successfully achieve my high ambitions.

First of all I want to thank DI (FH) Hans Tschürtz, MSc, MSc for supervising the thesis.

From the very first moment that I introduced my research questions to him, he was

enthusiastic about this topic. That marked the beginning of an exceedingly successful

collaboration that continued throughout the realisation of this thesis. No matter which

questions arose, I always had an opportunity to ask as he was always open and helpful in

his counsel. In addition I particularly want to thank Hans Tschürtz for advancing me in

order for me to have the opportunity to present my work in front of a broader audience

and to get in touch with other researchers.

Furthermore, I want to thank Dr. Andreas Gerstinger and Florian Loikasek, two

colleagues from Frequentis AG. Both supported me throughout the time of my writing this

thesis by giving feedback on a regular basis. My paper was greatly enriched by their

knowledge of and experience in safety-critical and agile software development.

Last but not least I want to thank my family, my partner and my friends for their

continuous support throughout my university studies. Thank-you for motivating me when I

felt down and for your generous understanding during these stressful times of study and

research.

Abstract

v

Abstract

Increasing use of software, fierce competition and ever changing business demands lead

to paradigm changes in the area of software development. Modern, lightweight and

efficient software development approaches called agile methodologies have gained

importance as they seem to address exactly those upcoming challenges. As these

changes have come about also in the area of safety-critical software development, the

question arises of whether the adoption of agile methodologies can leverage this

particular kind of software development as well.

As there is limited experience and evidence of the adoption of agile methodologies in the

area of safety-critical software development, these approaches are frequently confronted

with prejudices. In order to dispel these objections, this thesis focuses on developing an

agile procedure model that fits both safety and agility attitudes. For the purpose of

considering both ideologies, an evaluation of their underlying principles is done to

determine the most relevant synergies and conflicts. To ensure software safety, the

model is developed in the context of EUROCAE ED-153, a guideline for software safety

assurance in the air navigation service industry.

The result of this thesis is a holistic agile procedure model that allows software teams to

be agile while ensuring safety by incorporating the necessary activities required by ED-

153. Therefore the benefits ascribed to agile methods can be leveraged in order to

develop valuable, high-quality and safety-assured software for future customer needs and

demands.

Abbreviations and Acronyms

vi

Abbreviations and Acronyms

ACM Association for Computing Machinery

ALM Application Lifecycle Management

ANS Air Navigation Service

ANSP Air Navigation Service Provider

BPM Business Process Management

CASCON Centre for Advanced Studies on Collaborative Research

CESAR Cost-efficient Methods and Processes for Safety Relevant

Embedded Systems

CMMI® Capability Maturity Model® Integration

COTS Commercial Off The Shelf

CSR Corporate Social Responsibility

CTIT Centre for Telematics and Information Technology

DASC Digital Avionics Systems Conference

DoD Definition of Done

DoD Department of Defence

DRDO Defence Research & Development Organisation

DSRoE Derived Safety Requirements on Elements

EC European Commission

EMOSIA European Model for ATM Strategic Investment Analysis

ESARR EUROCONTROL Safety Regulatory Requirements

ESEM Empirical Software Engineering and Measurement

EUROCAE European Organisation for Civil Aviation Equipment

EUROCONTROL European Organisation for the Safety of Air Navigation

FDD Feature Driven Development

FHE Functional Hazard Evaluation

FMEA Failure Mode and Effective Analysis

FOSE Future of Software Engineering

FTA Fault Tree Analysis

GSN Goal Structuring Notation

HAZOP Hazard and Operability Study

HMI Human-machine Interface

ICAO International Civil Aviation Organization

ICB IPMA Competence Baseline

ICIS International Conference on Information

ICSE International Conference on Software Engineering

Abbreviations and Acronyms

vii

ICSEA International Conference on Software Engineering Advances

IEC International Electrotechnical Commission

IFIP International Federation for Information Processing

IJCSI International Journal of Computer Science Issues

IPMA International Project Management Association

ISaPro® Integrated Safety Process

ISO International Organization for Standardization

ISSC International System Safety Conference

ISW Information Survivability Workshop

IT Information Technology

ITEA Information Technology for European Advancement

MIT Massachusetts Institute of Technology

NASA National Aeronautics and Space Administration

OFR Office of the Federal Register

OOPSLA Object-oriented Programming, Systems, Languages & Applications

OSSE Operational System Safety Evaluation

PFH Probability of Dangerous Failure per Hour

PHA Preliminary Hazard Analysis

PHI Preliminary Hazard Identification

PP Pair Programming

PSP Personal Software Process

PSSE Preliminary System Safety Evaluation

ROI Return on Investment

RSSB Rail Safety and Standards Board

RTCA Radio Technical Commission for Aeronautics

SAAPM Safety Assured Agile Procedure Model

SAE Society of Automotive Engineer

SCFL Safety Critical Function List

SEI Software Engineering Institute

SIL Safety Integrity Level

SPI² System & Software Process Improvement and Innovation

SPICE Software Process Improvement and Capability Determination

SSDA Software Safety Design Analysis

SSE System Safety Evaluation

SSRA Software Safety Requirements Analysis

SWAL Software Assurance Level

TDD Test-driven Development

TSP Team Software Process

Abbreviations and Acronyms

viii

VISSE Vienna Institute for Safety & Systems Engineering

XP Extreme Programming

Table of Contents

ix

Table of Contents

ACKNOWLEDGEMENT ..IV

ABSTRACT ... V

ABBREVIATIONS AND ACRONYMS ..VI

TABLE OF CONTENTS..IX

1 INTRODUCTION AND PURPOSE .. 1

1.1 Background .. 1

1.2 Research Objectives ... 2

1.3 Research Method ... 3

1.4 Related Work .. 4

1.5 Overview ... 7

2 SAFETY ASPECTS IN SOFTWARE DEVELOPMENT 9

2.1 Terminology ... 9

2.1.1 Safety .. 9

2.1.2 System Safety ... 9

2.1.3 Hazards ... 10

2.1.4 Safety-critical Systems .. 11

2.1.5 Safety Integrity Level (SIL) .. 11

2.1.6 Threats: Faults, Errors and Failures ... 12

2.1.7 Safety Management .. 13

2.2 Software Safety .. 14

2.2.1 Relevance ... 14

2.2.2 Challenges .. 15

2.3 Safety Standards ... 15

2.4 Safety Analysis Methods & Techniques .. 16

2.4.1 Preliminary Hazard Analysis (PHA) ... 17

2.4.2 Failure Mode and Effective Analysis (FMEA) ... 17

2.4.3 Hazard and Operability Study (HAZOP) .. 17

2.4.4 Fault Tree Analysis (FTA) .. 17

2.5 Safety Case .. 18

Table of Contents

x

3 EUROCAE ED-153 GUIDANCE ... 19

3.1 Purpose and Scope ... 19

3.2 Software Assurance Level .. 20

3.3 Software Safety Assurance System ... 22

3.3.1 Software Safety Assurance System ... 22

3.3.2 Software Safety Assurance Process .. 23

3.4 Lifecycle Processes .. 24

4 INTEGRATED PROCESS MODEL ... 26

4.1 Project Management Lifecycle ... 27

4.2 Engineering Lifecycle .. 28

4.3 Safety Lifecycle ... 29

4.3.1 Preliminary Hazard Identification (PHI) .. 30

4.3.2 Functional Hazard Evaluation (FHE) .. 30

4.3.3 Preliminary System Safety Evaluation (PSSE) .. 30

4.3.4 Software Safety Requirements Analysis (SSRA) ... 31

4.3.5 Software Safety Design Analysis (SSDA) .. 31

4.3.6 System Safety Evaluation (SSE) ... 31

4.4 Support Processes .. 31

5 AGILE SOFTWARE DEVELOPMENT METHODS .. 33

5.1 Values and Principles .. 33

5.1.1 Values ... 33

5.1.2 Principles ... 35

5.2 Technical Practices ... 36

5.2.1 User Stories ... 36

5.2.2 Test-driven Development ... 37

5.2.3 Refactoring .. 37

5.2.4 Evolutionary Design ... 38

5.2.5 Continuous Integration ... 38

5.2.6 Pair Programming .. 38

5.2.7 Collective Code Ownership.. 38

5.3 Approaches .. 39

5.3.1 Extreme Programming (XP) ... 39

5.3.2 Scrum .. 39

5.4 Scientific Research.. 40

Table of Contents

xi

5.5 Interdependencies with Traditional Approaches 41

5.5.1 Introduction to Traditional Approaches .. 41

5.5.2 Combination of Agile and Traditional Methods ... 44

6 ED-153 OBJECTIVE MAPPING .. 46

6.1 Objective Mapping Method ... 46

6.2 Integrated Process Lifecycle Overview ... 47

7 SAFETY VERSUS AGILE PRINCIPLES ... 49

7.1 Evaluation .. 49

7.2 Synergies ... 50

7.2.1 Social Factors .. 51

7.2.2 Process Factors ... 51

7.2.3 Technical Practices ... 52

7.3 Conflicts ... 53

7.3.1 Agile Values .. 53

7.3.2 Process Factors ... 55

7.3.3 Technical Practices ... 57

8 AGILE PROCEDURE MODEL .. 59

8.1 Preconditions and Constraints... 60

8.2 Pre-game Phase ... 61

8.2.1 Workshop Organisation ... 61

8.2.2 Part One: Creation of the System or the Product Vision 62

8.2.3 Part Two: Development of the Technical Concept 63

8.2.4 Part Three: Performance of the First Safety Analyses 64

8.2.5 Outputs .. 66

8.3 Iteration-driven Phase ... 67

8.3.1 Responsibility Assignment ... 67

8.3.2 Product Architecture Team .. 67

8.3.3 Software Development Team .. 69

8.3.4 Documentation .. 69

8.3.5 Overall Picture ... 70

8.4 Spin-off Phase ... 71

8.4.1 Test System Delivery ... 71

8.4.2 Operational Delivery .. 71

8.5 Wrap-up Phase .. 72

Table of Contents

xii

8.6 Compliance to Adapted ISaPro® and EUROCAE ED-153 73

8.7 Evaluation of Agile Procedure Model .. 75

8.7.1 Proof of Agility ... 75

8.7.2 Advantages & Disadvantages .. 77

8.7.3 Applicability ... 77

9 SUMMARY .. 79

GLOSSARY ... 81

BIBLIOGRAPHY ... 84

LIST OF FIGURES .. 93

LIST OF TABLES ... 94

ANNEX A: EUROCAE ED-153 MAPPING TABLES ... 95

Legend .. 95

Software Safety Assurance System ... 96

Software Safety Assessment Initiation .. 96

Software Safety Assessment Planning .. 96

Software Safety Requirements Specification ... 97

Software Safety Assessment Validation, Verification and Process Assurance 98

Software Safety Assessment Completion .. 99

Summary .. 99

Primary Lifecycle Processes ... 100

Development Process ... 100

Summary .. 105

Supporting Lifecycle Processes ... 107

Configuration Management ... 107

Quality Assurance Process ... 110

Verification Process .. 110

Validation Process .. 117

Joint Review Process .. 117

Summary .. 118

Organisational Lifecycle Processes ... 119

Management Process ... 119

Summary .. 121

Table of Contents

xiii

ANNEX B: ADAPTED INTEGRATED PROCESS MODEL 122

Project Management Lifecycle .. 122

Safety Lifecycle .. 124

Engineering Lifecycle .. 125

Supporting Processes ... 129

Compliance Analysis Results ... 131

1 Introduction and Purpose

1

1 Introduction and Purpose

1.1 Background

Increasing globalisation in combination with tougher competition is an evolution which has

been observable over the last few decades in every technology branch. Companies and

enterprises which have successfully positioned themselves as high-quality software

producers in previous years are nowadays confronted with shorter innovation cycles and

the continuously changing demands of the market [Mac03, VB09]. These effects are

further intensified by the increasing complexity of systems and software within the context

of information technology [GH12].

These factors have found their way into the domain of safety-critical applications as well

[Hei07]. Although quality and safety are of the utmost importance in this domain, the

market and customer needs have become more crucial. In terms of quality and safety,

these software systems have to comply with certain general and domain-specific safety

standard specifications. While customers consider safety compliance, quality and

reliability as a matter of course, the focus on functional requirements has been increasing

continuously [Gar09].

In order to overcome these new challenges and satisfy corresponding requirements, new

approaches within the context of software development were introduced in the 1990s.

One of these emerging modern approaches is agile software development. This term

groups various approaches whose aim is to provide a lightweight, efficient and more

flexible development process compared to traditional approaches [NMM05]. The benefits

ascribed to agile methods are attractive to software development teams working in the

safety-critical software domain as well. This attractiveness is mainly caused by the

traditional way, in which safety-critical systems are developed according to a rigorous

heavyweight process that emphasises an upfront design and the production of

documentation [GPM10]. Safety standards highly influence this process by mandating

steps to be followed or evidence to be delivered from the process. Such procedure

models are wide spread in safety-critical development due to their wide acceptance, their

thorough definition and the fact that they have been the best practices for many years

[GPM10].

Agile procedure models are challenged mainly because of their lightweight approach and

their attitude to processes and documentation, which seem to be inappropriate for the

proof of safety. Some of these perceptions are caused by prejudices about agile

approaches in projects such as the lack of discipline and/or documentation [Hol06]. In

addition to this uncertainty, there is limited industrial experience and evidence of how to

successfully adopt these practices in the domain of safety criticality. Those are the main

reasons why industry is still so cautious when it comes to the adoption of these modern

software practices [LBB+02].

1 Introduction and Purpose

2

One business area, in which these previously indicated trends can actually be observed

is the field of software development for air traffic management. A draft plan for global air

navigation capacity and efficiency, published by the International Civil Aviation

Organisation (ICAO), outlines the fact of extensive software use, particularly in the area of

air navigation services [ICAO12]. In this plan, which focuses on the years until 2028, the

ICAO mentions the terms ñcloud applicationsò and ñsoftware as a serviceò [ICAO12].

These references strongly indicate that software is one of the key enablers for meeting

the future strategic objectives in air navigation.

In such safety-critical areas, standard specifications for the development of hardware and

software are common today. Due to the fact that the use of software is still increasing, it is

becoming necessary to develop guidelines specifically focused on software development.

This is especially important because of the huge multiplicity of approaches and

programming languages which are used nowadays [HSV+12, Kin11]. In August 2009, the

European Organisation for Civil Aviation Equipment (EUROCAE) issued the guidance

ED-153, which particularly applies to the software parts of systems within air navigation

services [EUROCAE09]. ED-153 and its related standard specifications in other industry

segments only mark the beginning of an engagement in safety assurance within software

systems and applications. In combination with the various development approaches

available, these aspects will be some of the main topics that safety has to deal with in the

near future [LCF13].

1.2 Research Objectives

As pointed out in the introductory chapter, there is a lot of uncertainty about adopting

agile methods within the area of safety-critical software development. Furthermore,

research about the suitability and applicability of agile methods in such industries is still at

an early stage [GPM10] as successful adoptions and experiences reported in literature

are very rare.

These concerns lead to the following central research question:

Can agile methodologies be used to develop safety-critical software

applications?

By raising this research question, the following hypothesis can be proposed:

It is possible to use agile methodologies successfully in the development of

safety-critical software, if that usage is diligent and thoughtful. To achieve this,

an appropriate procedure model including suitable methods must be used.

The scope of this thesis is to investigate why agile methodologies conflict with safety-

related issues and whether these conflicts can be overcome by using an adapted agile

procedure model for safety-critical software development. Within such a model, it is

necessary to consider the tasks and activities required in order to ensure safety.

Therefore the whole investigation is accomplished in the context of EUROCAE ED-153

[EUROCAE09], a guideline on software safety assurance. The results of this investigation

1 Introduction and Purpose

3

should support the decision-making of organisations that deal with the issue of adopting

agile methodologies within the safety-critical area.

1.3 Research Method

In order to answer the research question and prove the proposed hypothesis, a defined

research method is necessary. Figure 1 depicts the four steps of the research method

that is applied in this thesis.

Elaboration
Analysis of safety standard specification ED-153 and elaboration

of its requirements for the software development process

Analysis
Analysis of agile methods and corresponding

experiences in the safety-critical area

Investigation
Comparison of agile and safety principles and

elaboration of their potential synergies and conflicts

Development
Development of an agile procedure model that fits

all previously investigated and gathered information

Figure 1: Research Method

The first phase of the research method consists of the analysis of the EUROCAE ED-153

[EUROCAE09] guideline for software safety assurance and the elaboration of its

requirements regarding the software development process. In the analysis, all applicable

objectives are mapped to processes of a generic development procedure model called

ISaPro® [TKH12] that is specifically tailored to the safety-critical industry. This mapping

should help to identify all necessary activities in order to be compliant.

The analysis of agile methods including their values, principles and approaches is the

focus of the second phase. Furthermore this chapter deals with the technical practices

that are commonly used in conjunction with agile methods. An overview of the published

results of scientific researches and the interdependencies between agile and traditional

approaches complete this research phase.

1 Introduction and Purpose

4

The third phase of the research method comprises the evaluation of the principles of

safety and agility and shows how these principles interact. In order to identify their

potential synergies and conflicts, the attitudes, processes and technical practices of both

approaches are examined.

The development of an agile procedure model that fits into safety-critical software

development is the central topic in the fourth and last phase of the research method. This

model is created considering the principles of safety and agility. In addition, this research

phase is influenced by the requirements that are imposed on the software development

process by ED-153.

1.4 Related Work

As outlined in the Background (see chapter 1.1), agile methodologies have advantages in

environments that are challenged by continuously changing demands and requirements.

To leverage these benefits, the topic of adopting agile methodologies in the area of

safety-critical development is of great interest. This is also supported by numerous

scientific papers that were published in the last few years. The most relevant articles

including their results are described in this section.

An Iterative Approach for Development of Safety-Critical Software and Safety Arguments

written by Ge, Paige and McDermid [GPM10], is a conference paper that deals with

aspects of this thesis. Their paper addresses the notion of up-front design and the key

difficulties that appear when developing safety-critical software iteratively.

Their first result was the generation of a generic software development lifecycle model for

agile methods in order to reduce different agile methods to a common denominator. This

lifecycle consists of four phases: preparation, planning, short iterations to release, and

integration. When the generic agile model was compared to traditional approaches, the

authors identified two major differences within the traditional approaches: the use of an

up-front design and a very monolithic way of implementation. [GPM10]

Regarding the first issue, the up-front design, the authors agree with the agile

methodology of creating the shape of the system first, followed by developing its detailed

design iteratively during implementation. Nevertheless this shape must be detailed

enough to provide sufficient input for the hazard analysis (also recommended in other

papers and studies by Garg [Gar09] and Bozheva et al. [BHI+05]). In order to achieve this

sufficiency, the system architecture model and the main functional requirements for each

component have to be produced in this initial phase. [GPM10]

The second issue raised by the paper is the iterative development of safety-critical

software. The main concerns referred to the plan to produce the safety argument of the

system iteratively. In order to answer these concerns, the authors recommend the

1 Introduction and Purpose

5

construction of modular safety arguments, e.g. for each software module. The system

safety argument finally consists of all modular component safety arguments and one

argument that deals with the interactions of those single modules. [GPM10]

Their conclusion is that agile practices may not change the nature of the entire safety-

critical development procedure model, but can improve the agility of this development bit

by bit [GPM10].

In another paper entitled Agility and Lean for Avionics the author Chenu [Che09]

describes how agile approaches have brought value to avionics. In the paper he points

out that in his opinion safety analyses are not feasible to assess the amount and different

kinds of software errors. Therefore organisations developing safety-critical software

should impose rigour on the development process in order to be confident that safety is

ensured.

According to Chenu [Che09] agile practices, particularly test-driven development (see

chapter 5.2.2), contribute to more efficient development and bring value to the

certification of the software. The author even stated that, in his opinion, automatic and

repeatable tests have a great advantage over manual ones. A conclusion he reached

having witnessed distracted and bored employees testing safety-critical software on

several projects in which he was involved. [Che09]

Based on Chenuôs experience, Extreme Programming (see chapter 5.3.1) as an agile

methodology can be used for software that has to be certified. The main problems during

the certification process are caused by requirements and traceability. That is why these

issues have to be considered very carefully when adopting an agile method. In Chenuôs

opinion, agile values and principles (see chapter 5.1) fit with safety-critical software

development apart from the stance on documentation. As documentation is essential for

certification, it has to be written and developed iteratively. [Che09]

Another hypothesis proposed by Chenu [Che09] is that ñ[é] it is easier to make a correct

program fast than it is to make a fast program correctò. Therefore he recommends

preventing premature code optimisation. Instead, performance should be continuously

monitored and improved based on these hard facts. Another important consideration

when adopting agile practices is the determination of the iteration length. Chenu [Che09]

recommends using longer intervals, e.g. four weeks, in safety-critical developments, due

to the high complexity that such projects usually have to deal with.

Chenuôs [Che09] conclusion is that agile and lean practices help to grow high-integrity

products, while reducing costs. Both organisational and engineering practices have to be

combined in an effective way while imposing rigour and strict discipline on them.

Technical excellence has to be the target of utmost importance in order to succeed.

1 Introduction and Purpose

6

A related article ï older but still valid ï written by Poppendieck and Morsicato [PM02] in

2002 is XP in a Safety-critical Environment. Like Chenuôs article, it discusses the

experience of using Extreme Programming for developing software that has to be

certified. The authors noticed a conflict between the identification of all hazardous

conditions in the beginning and the safe-guarding that all upcoming changes do not

influence existing hazard controls. [PM02]

Morsicato [PM02] proposed the hypothesis that ñ[é] it is dangerous to think that all the

safety issues will be exposed during an initial designò. According to his opinion, it is far

better to re-evaluate safety issues on a regular basis, based on what has been educed

from development (this is also recommended in another study by Vuori [Vuo11]). This

continuous task should be facilitated by a parallel refactoring of the software in order to

achieve a simple design. This simplicity would subsequently lead to a safer design,

allowing the developers to concentrate on safety. [PM02]

A further important point of consideration is the unit test framework of the software. The

authors recommend an emphasis on rigorous in-line testing with the help of unit tests

(which is in line with statements provided by Bozheva et al. [BHI+05]). The advantage of

this approach is that in the case of problems appearing, the developers just have to take

a look at the interfaces for the causes of the defects. [PM02]

The conclusion of the article was that the examined project did not pass the audit by the

customer in the end. However, this was not because of the fact that they were using

Extreme Programming. It was simply the fact that the organisation had no defined

process for such an agile development method. Therefore the auditor objected to the fact

that the development team was allowed by the organisation to implement new

methodologies unilaterally. Based on their experiences, both authors agreed that it is

definitely possible to implement agile approaches in the industrial area of safety-critical

systems. [PM02]

Many scientific articles such as these three indicate that the adoption of agile

methodologies within the development of safety-critical software is possible. In most

cases this is done either by describing how to adopt single agile values or principles in

order to fit safety-critical developments or by conducting a survey in the software

development industry. Only a minority of the academic articles that have been published

had the research goal of developing a kind of agile procedure model that is designed for

applying agility and safety. Given that, this thesis proposes the development of a holistic

agile procedure model based on the objectives of EUROCAE ED-153 and the values of

agility in order to generate scientific findings for the adoption of agile methods.

1 Introduction and Purpose

7

1.5 Overview

This thesis is structured as follows:

Chapter 2 introduces the basic safety aspects when dealing with software development. It

aims to give an overview of the various terms used, the characteristics of software safety,

the safety standard families and some of the methods and techniques used during the

analyses.

Chapter 3 deals with the introduction to the EUROCAE ED-153 [EUROCAE09] guidance

on software safety assurance. First it describes its definition of the purpose, scope and

perception of a software safety assurance system. In addition it points out all the

applicable processes and objectives of ED-153 within the scope of this thesis.

Chapter 4 presents a generic procedure model which is especially tailored to safety-

critical development: the ISaPro® [TKH12]. It facilitates the determination of activities that

are necessary to satisfy the relevant objectives of the EUROCAE ED-153 guidance.

Chapter 5 gives an overview of the agile methodologies. This includes their values,

principles and the technical practices that are recommended by them. Additionally, this

chapter refers to relevant scientific studies and the interdependencies between agile and

traditional software development methods.

Chapter 6 explains the model of the objective mapping process from the ED-153

guidance to the ISaPro® framework. In addition it presents the condensed results of this

process in a tabular formatted overview.

Chapter 7 outlines the evaluation of the principles of safety and agility. Furthermore this

chapter deals with the identification of potential synergies and conflicts between the two

approaches.

Chapter 8 is the core part of this thesis. It describes the agile procedural model which has

been developed for organisations adopting agile methodologies in the area of safety-

critical development. The chapter comprises a detailed description of the model, its

compliance with ED-153 and its evaluation in relation to certain topics.

Chapter 9 concludes the thesis with a summary of the results.

Annex A comprises the detailed results of the objective mapping process, where each

objective of ED-153 is mapped to one ISaPro® process. It also includes a summary of

ISaPro® processes showing which of these processes fulfils which ED-153 objectives.

1 Introduction and Purpose

8

Annex B consists of the adapted integrated procedure model that has been tailored and

extended in order to be compliant with EUROCAE ED-153. This model is described by a

comprehensive list of activities for each ISaPro® process. In addition, these activities are

linked to the different phases of the agile procedure model (developed in chapter 8) in

which they should be conducted.

2 Safety Aspects in Software Development

9

2 Safety Aspects in Software Development

Due to the focus of this thesis on safety assurance within the development of software,

this chapter will deal with the basics of safety and in particular the safety aspects in

software development.

2.1 Terminology

Apart from the term >safety-critical systems<, a few basic terms should be defined in

order to achieve a common point of view. Many different definitions of the various terms

used in this paper can be found in scientific literature, therefore only the most suitable of

these sources will be cited.

2.1.1 Safety

The term >safety< is defined in many different ways in literature and standard

specifications. For the purpose of this thesis the definition by the British Rail Safety and

Standards Board (RSSB) is a very appropriate one. It points out that it is not only users

who are affected by the systemsô or productsô safety; the whole general public might be

affected too and therefore such safety issues should be avoided.

ñThe avoidance of death, injury or poor health to customers, employees,

contractors and the general public, caused by occupational accidents, incidents

or hazards, also avoidance of damage to property and the environment.ò

Rail Safety and Standards Board [RSSB93]

According to Aviģienis et al. [ALR+04], safety is embedded in the holistic concept of

dependability. To be more precise, safety is, along with availability, reliability, integrity and

maintainability, an attribute of dependability as depicted in Figure 2. Dependability is

defined as the ability to deliver a service that can justifiably be trusted. Safety is defined

as the absence of catastrophic consequences affecting the user(s) and environment in

this context. [ALR+04]

Figure 2: Dependability Attributes [based on ALR
+
04]

2.1.2 System Safety

System safety is defined in many military standards (e.g. DoD MIL-STD-882E [DoD12])

and also by the US Air Force Safety Agency as follows:

2 Safety Aspects in Software Development

10

ñThe application of engineering and management principles, criteria, and

techniques to optimize all aspects of safety within the constraints of operational

effectiveness, time, and cost throughout all phases of the system life cycle.ò

Air Force Safety Agency [AFSA00]

System safety is considered as a term with quite a vast range of meanings. To accurately

define system safety it is necessary to decide whether the system consists of only one

simple element or numerous subsystems which presumably have various dependencies

on each other [Wel02]. This thesis will primarily focus on complex software systems with

various subsystems and therefore the term >software safety< ï defined in chapter 2.2 ï is

more appropriate.

The activities covered by system safety focus on identifying, analysing and assessing

hazards in order to set preventive measures to avoid hazardous situations (see chapter

2.1.3) [NASA04].

2.1.3 Hazards

According to Leveson [Lev11], a hazard is defined as a system state or set of conditions,

which, together with a particular set of worst-case environmental conditions, will lead to

an accident or loss. Some definitions use a set of events rather than a set of conditions,

but both can be used if they are used consistently. Another definition provided by

EUROCAE [EUROCAE09] is that a hazard is a potential risk situation in which one or

more causes lead to one or more consequences that are a potential source of harm (see

Figure 3).

AND
 /

OR

AND
 /

OR

AND
 /

OR

Malfunctions or Failures

A

B

C

D

A

B

C

D

Effects

Hazard

Figure 3: Relationship between Malfunctions or Failures, Hazards and Effects [based on

EUROCAE09]

Regardless of which of the definitions is chosen, hazards are basically kinds of

preconditions that occur on the boundaries of a system and can lead to an incident or

2 Safety Aspects in Software Development

11

accident. To ensure the detection of hazards, it is necessary to define the system as

accurately as possible to investigate its boundaries for possible hazards. System safety is

responsible for implementing controls for any of the identified hazards that cannot be

accepted as tolerable risk. These controls reduce either the likelihood of the cause or the

impact of the consequence or both [EUROCAE09].

2.1.4 Safety-critical Systems

A term that has to be distinguished from system safety (see chapter 2.1.2) is >safety-

critical system<. This is synonymous with the term or >safety-relevant system<. Both

terms are widely used and their distinction has become blurred. Safety-critical systems

tend to be those systems in which a single failure leads to a fatality or strongly increases

the risk to the environment [SS04]. Systems in which a single failure is not necessarily

critical, and another coincident failure of some other item must occur for there to be a

fatality, tend to be called safety-relevant systems [SS04].

The term >system safety< ï defined in chapter 2.1.2 ï is the term for a process-oriented

view of safety aspects. Safety-critical systems are in fact those systems which could

cause harm to humans, property or the environment. According to Knight [Kni02], the

term could be considered within a broader scope:

ñIf the failure of a system could lead to consequences that are determined to be

unacceptable then the system is safety-critical.ò

John C. Knight [Kni02]

Along with the term >safety-critical systems<, there are specific industries or domains

which are generally considered as safety-relevant. This is based on the fact that there is a

high probability that system failures will cause harm to humans, property or environment.

These domains are:

¶ Aerospace and aviation

¶ Automotive industry

¶ Pharmaceutical industry

¶ Automation

¶ Defence

¶ Infrastructure

2.1.5 Safety Integrity Level (SIL)

The safety integrity levels were introduced in various specification standards (including

IEC 61508 [IEC10]). They require that a certain safety level has to be assigned to

processes which have insufficient mitigation from potential hazards. In order to minimise

their potential impact it is necessary to add safety functions or systems to these

processes. This should ensure functional safety. In the IEC 61508 specification there are

four SILs, where SIL 1 is the lowest and SIL 4 the highest level of safety integrity [IEC10].

SILs are basically a measure of the reliability of the safety-related system regarding its

avoidance of dangerous failures. So the assignment of the level is based on the required

2 Safety Aspects in Software Development

12

availability of a safety-related function. The higher the risk of the system, the higher the

required availability has to be and depending on that the higher the allocated SIL is.

[Hya03]

Table 1 shows the failure rates for dangerous failures per safety integrity level according

to IEC 61508 [IEC10]:

Safety
Integrity

Level (SIL)

Average frequency of a
dangerous failure of the safety

function (PFH) [h
-1

]

4 Ó 10
-9

 to < 10
-8

3 Ó 10
-8

 to < 10
-7

2 Ó 10
-7

 to < 10
-6

1 Ó 10
-6

 to < 10
-5

Table 1: Safety Integrity Levels (SIL) [IEC10]

Due to the focus on failure rate, the SIL is more appropriate on hardware than on

software (see the quote by Nancy Leveson in chapter 2.2). Therefore different standards

use different classifications for categorising systems into classes of safety-criticalness.

Due to the focus of this thesis on software and EUROCAE ED-153 [EUROCAE09], their

level, called the Software Assurance Level (SWAL), will be introduced in chapter 3.2.

2.1.6 Threats: Faults, Errors and Failures

According to Aviģienis et al. [ALR00], threats are factors endangering dependability (see

chapter 2.1.1). Figure 4 shows the division of these threats into three categories.

Figure 4: Categories of Threats [ALR00]

When a service implements a specified system function, a correct service is delivered. In

the case that the delivered service deviates from the correct service it is called a system

failure. There are various reasons why a system may fail: probably the system does not

comply with the specification or the specification does not accurately describe the

function. More precisely, the failure is the transition between a correct and an incorrect

service. The timespan until the service is restored is called outage. [ALR00]

The trigger for such a failure is an error which reaches the service interface. A service

failure therefore means that at least one of the external states of the system deviates

from the correct service. The cause for this deviation is called the error. It is important to

2 Safety Aspects in Software Development

13

mention that many of the errors do not reach the service interface and therefore remain

unnoticed. [ALR00, ALR+04]

A fault is the suspected cause of an error. It might be the case that many of the faults are

dormant. When the fault actually leads to an error, it is considered as an active fault.

[ALR00, ALR+04]

As the previous three paragraphs indicate, faults are preconditions for errors and errors

are preconditions for failures. Figure 5 depicts this fact, which is, according to Aviģienis et

al. [ALR00], also called the ñfundamental chain of threatsò. Failures are always visible at

the system boundary, whereas faults and errors cannot be perceived there. The last

transition after the failure has occurred can lead to different situations. Failures may

cause new or dormant faults or even potential sources of harms, e.g. hazards (see also

Figure 3). [ALR00]

Fault Error FailureCausation Activation Propagation

Figure 5: Fundamental Chain of Threats [ALR00]

2.1.7 Safety Management

Safety management is a business-like approach to safety; according to Schedl et al.

[SW08] it is defined as follows:

ñSafety management is a pro-active and reactive discipline aiming at minimising

the risk of an accident as far as reasonable practicable.ò

Gabriele Schedl et al. [SW08]

According to this quote the philosophy of this approach focuses on prevention. Another

important fact is that the responsibility for systematic safety management has to start at

the very top of the organisation and cascades down the hierarchy. Safety managers are

the main driving force within the context of the company for establishing and co-ordinating

an effective strategy for safety management. These employees have to ensure that the

scope of safety management is companywide. As with the majority of management

systems and processes, there is a strong focus on the continuous improvement of safety

management as well. [SW08]

Safety management consists of the following key aspects:

¶ Documents (e.g. a safety policy or safety handbook) [Lev11]

¶ Competence and independence of safety engineering employees [IEC10]

¶ Safety lifecycle including safety activities using well-known methods (see chapters

2.4 and 4.3) [IEC10]

2 Safety Aspects in Software Development

14

2.2 Software Safety

Due to the fact that this thesis deals with safety-critical software, the term >software

safety< is more appropriate. In general this term customises the term >system safety<

(see chapter 2.1.2) to software.

One of the major differences between software and system safety is that software cannot

cause harm directly to humans or the environment. However software is typically used for

operating an electronic system (e.g. a computer) or controlling other hardware parts;

therefore it can either lead directly to a hazard or it can be used to control hazards. This

kind of software is called hazardous software. [NASA04]

ñSoftware does not fail ï it just does not perform as intended.ò

Nancy Leveson [NASA04]

Safety-critical software includes the previously mentioned hazardous software and all

kinds of software which influence it. According to the NASA Software Safety Guidebook

[NASA04] the term covers the following types of software:

Software that é

¶ é controls or monitors hazardous or safety-critical hardware or software

¶ é provides information which is necessary for safety-related decisions

¶ é performs off-line processes or is used for analysis of safety-critical software

(e.g. software for verification of hazard controls, modelling and simulation

programs used for simulating the operational behaviour of a safety-critical system)

¶ é resides on the same physical platform with safety-critical software

2.2.1 Relevance

This section outlines the practical relevance of software safety in todayôs systems. First of

all, the general use of software in our lives has been increasing continuously. This is

mainly caused by the attempt to leverage software for all the actions in daily life that can

be automated. In combination with the aims of reducing costs and gaining performance,

this is leading to a steady trend toward higher complexity [BV10]. The fact of increasing

interoperability between systems is further reinforcing that trend [Wal04].

In 2009 a report by NASA determined that the size of flight software in space shuttles is

growing exponentially over time (1969 ï 2005) [Dvo09]. According to Bozzano et al.

[BV10] similar trends can be observed in other domains such as avionics, automotive and

switching systems. Along with software size, software complexity is increasing too. This

can be seen from the increasing number of functions and states and the discontinuous

behaviour of software itself, where a little variation in one program input could cause a

great variation in one output [BV10].

2 Safety Aspects in Software Development

15

Apart from software size and complexity, there is a social aspect leveraging the trend

towards considering safety in software systems as well. As many examples show, the risk

acceptability in society is continuously decreasing. This can be associated with the

majority of customer or user needs in accordance with the Kano model, where the

innovations of yesterday are the basic needs of tomorrow [KST+84]. The passenger

airbag in a car is one example of a safety function which is basic equipment nowadays

but in the early 1990s was only part of upscale configurations.

These trends indicate that there is a need to engineer complex cross-linked safe software

systems in order to meet the high expectations and requirements of todayôs society.

2.2.2 Challenges

Reliability and availability are central topics of system safety (see chapter 2.1.2). The IEC

for example defines the safety integrity levels (SILs) (see chapter 2.1.5) as values for

reliability with respect to dangerous failures [IEC10]. Reliability is in turn coupled with

availability under the premise of constant maintainability [MTL10].

Reliability is especially important when it comes to hardware such as mechanical or

electronic components. These components have an average life span under certain

conditions which is influenced by environmental and operational impacts. By means of

statistics mean failure rates can be calculated. In contrast, the reliability of software is

hard to determine. As the quote by Leveson (see chapter 2.2) indicates, software does

not fail, break down or wear out. But software has a large number of states in comparison

to hardware. Thus it is not economical or even possible in larger software projects to test

all those states. These facts lead to the conclusion that all software failures are caused by

systematic faults in development or operation. Therefore IEC recommends qualitative

techniques and evaluations. [IEC10, NASA04]

While reliability of software cannot be measured exactly or tested exhaustively, NASA

[NASA04] recommends that the following system characteristics be determined for

estimating the effort that is required to meet the targeted safety level:

¶ Degree of control over safety-critical functions

¶ Software system complexity

¶ Timing criticality of control actions

2.3 Safety Standards

Since safety is such a sensitive issue, there are various safety standards, regulations and

various types of guidance in place. Typically safety-critical systems require certification or

assessment based on specific standards in order to permit the transition into operation.

These standards define a number of accepted ways of developing safe systems.

2 Safety Aspects in Software Development

16

In the course of the development of safety-critical systems there is the challenge of

having dozens of different safety standards to fulfil. While some of them are generic

approaches, others concentrate on specific domains or industries. Figure 6 provides an

overview of safety standards grouped by their application. While IEC 61508 [IEC10] is a

generic standard, many other industry-standards have been derived from it, such as the

ISO 26262 for the automotive industry. In particular industries, such as avionics or in the

military industry, even custom standard specifications are available, which in fact have

some further derived and related standards.

IEC 61 508

ISO 26262
(automotive)

CENELEC
EN 50 128 (rail)

IEC 61 513
(nuclear)

IEC 63 204
(medical)

IEC 61 511
(process)

Generic

RTCA DO-178B
(USA)

Avionics

RTCA DO-278RTCA DO-178C

Def Stan 00-56
(UK)

Military

MIL STD 882E
(USA)

ED-12B (EU)

ED-153 (EU)

Air Traffic
Control

Figure 6: Safety Standard Families [based on Gar12, SW08]

Common topics within safety standards are:

¶ Description of development approach including all relevant activities

¶ Detailed description of safety process or procedure model

¶ Scope of risk and hazard identification techniques

¶ List of necessary formal safety analysis throughout the whole lifecycle

¶ List of required documents for approval

2.4 Safety Analysis Methods & Techniques

In order to ensure system or software safety it is common to use generally accepted

safety analysis methods and techniques. This chapter gives a brief overview of the most

reasonable ones. It has to be pointed out that during the safety lifecycle (see chapter 4.3)

it is necessary to employ more than one specific method. An example of the combination

2 Safety Aspects in Software Development

17

of different methods and techniques is the usage of an inductive (e.g. FMEA, see chapter

2.4.2) and a deductive (e.g. FTA, see chapter 2.4.4) method.

2.4.1 Preliminary Hazard Analysis (PHA)

The preliminary hazard analysis (PHA) uses the preliminary hazard list (which is initially

created and based on the technical concept of the system) as its input and further

expands and develops it. The first task is to identify general hazard groups in order to

simplify, cluster and categorise the preliminary hazard list. The PHA is one of the most

critical analyses because of its first attempt to isolate the hazards of a system. It will

provide reasonable hazard controls and indications where further analyses are needed

due to the criticality of the systemôs part. [Hya03, Vin06]

2.4.2 Failure Mode and Effective Analysis (FMEA)

The Failure Mode and Effective Analysis (FMEA) is an inductive bottom-up approach

used to determine the reliability of a system. It is designed for evaluating a system or a

subsystem to identify all possible failures of each individual component including a

forecast of their effects on the analysed level and the next higher level. This is done by

assessing all possible hazards by determining their likelihoods and severity. Furthermore

this list of possible failures is augmented by recommendations for mitigating the identified

hazards in order to reduce or even remove them. FMEA supports the safety engineering

process on different levels during the whole lifecycle, although the analysis is commonly

used very early in the system development on the component level. [BV10, Vin06]

2.4.3 Hazard and Operability Study (HAZOP)

According to Vincoli [Vin06] the definition of the hazard and operability study (HAZOP) is

a ñsystematic investigative study, which has the goal to examine potential deviations of

operations that could result in problems or hazardsò. This method is particularly

appropriate for analysing the systemôs interfaces. Critical success factors of this method

are on the one hand the experience and expertise of the attendees and on the other hand

the communication process between them. The objectives of the study are to predict

accidents by using information from previous analyses (e.g. the preliminary hazard

analysis) and to discuss them in order to identify specific safety aspects and

requirements. In addition it is of importance that the necessary reference data is available

for supporting the analysis. This approach should result in the determination of

appropriate design considerations for the purpose of accident prevention. [RCC99, Vin06]

2.4.4 Fault Tree Analysis (FTA)

The fault tree analysis (FTA) is a deductive method of logic which is especially used for

very complex or detailed systems. In contrast to FMEA (see chapter 2.4.2), this method is

a top-down approach, whereby the logic moves from the general to the specific level.

Therefore it is used for examining possible conditions that lead to an undesirable event.

This event is considered as the general or known outcome of a possible series of events

and is the top event in this analysis. The aim of this analysis is the identification of

2 Safety Aspects in Software Development

18

specific events that contribute to the top event, which results in the construction of a tree:

the fault tree. The contributing factors can be clustered by their origin in order to allow

accurate identification of where breakdowns can occur, if and what relationships exist,

and which interfaces are affected. [Eri05, Vin06]

2.5 Safety Case

The safety case is also often referred to as the safety justification or safety assessment

report [Sto96]; Wilson et al. [WKM97] define its purpose as follows:

ñThe purpose of a safety case is to present a clear, comprehensive and

defensible argument supported by calculation and procedure that a system or

installation will be acceptably safe throughout its life (and decommissioning).ò

Wilson et al. [WKM97]

In order to fulfil safety certification standards, it is necessary to provide structured

arguments and supporting evidence that the risks associated with the system have been

considered carefully and appropriate actions have been taken in order to minimise them.

The safety case therefore contains the description of the design and assessment

methods used in the development process of a system. As this document is designed for

third parties as well, it has to be as precise and clear as possible. This should help to

support external parties such as certification or public authorities in confirming the safety

of a product or system. [Sto96, TKH12, WKM97]

The representation of such a safety case can be either textual or in a graphical notation.

While in most cases the textual ones are single linear documents that link results

contained in other deliverable documents [WKM97], the graphically notated ones mostly

use the so-called ñGoal Structuring Notationò (GSN), developed by Kelly [Kel98]. This

graphical technique is used to explicitly document the elements of any argument and the

relationships between them. The main purpose is to demonstrate how claims concerning

the safety of a system are divided into sub-claims until it can be supported by a body of

evidence, e.g. the documented results of a safety analysis [TKH12]. Further advantages

of GSN are its reusable patterns, reduced fault probability and the standardised

framework [KW04, York11], which are further reasons why this method is widely used in

industry [KW04].

3 EUROCAE ED-153 Guidance

19

3 EUROCAE ED-153 Guidance

While chapter 2.3 provides a brief overview of the safety standard families, this chapter is

intended to introduce EUROCAE ED-153 [EUROCAE09]. EUROCAE ED-153 is a

guideline for software safety assurance specifically in the area of air navigation service

(ANS). Henceforth this guideline will be used as the basic input for the development of

the agile procedure model (see chapter 8).

3.1 Purpose and Scope

Today a rising percentage of safety-critical air navigation service functions rely on

automated processes, which are supported by software in many cases [EUROCAE09,

Zem08]. This fact gives rise to new challenges for ensuring the required level of safety for

this set of functions. The European Organisation for Civil Aviation Equipment

(EUROCAE), a non-profit organisation which deals with the standardisation of electronic

equipment in aviation, has therefore published the ED-153 [EUROCAE09] guidance. This

guideline gives information on how to assure that the risk associated with deploying

software within air navigation services is reduced to an acceptable level.

Content of the ED-153 guideline [EUROCAE09]:

¶ Recommendations and requirements for providing software safety assurance

o Per major process in the software lifecycle

o Per software assurance level (SWAL) (see chapter 3.2)

¶ References to other standards dealing with safety assurance (e.g. IEC 61508

[IEC10])

¶ Guidance on how to partially satisfy European Union regulations (EC No 482/2008

[EU08])

The scope of the document is defined as all software components across their overall

lifecycle within the ANS system. Furthermore the guideline is limited to the ground

segment of air navigation services and explicitly excludes aircraft software. A key element

of the document is software safety and therefore all references made to software lifecycle

data are to be understood in the context of safety assurance.

Figure 7 shows the various levels of guidance which are provided by EUROCAE ED-153

[EUROCAE09]. At the top there are two relevant regulations imposed by the European

Union, which cover the contexts shown in Table 2 [EU04, EU08].

Regulation Context

(EC) No 552/2004 Interoperability of the European Air Traffic Management Network

(EC) No 482/2008
Establishing a Software Safety Assurance System to be Implemented by Air
Navigation Service Providers

Table 2: European Union Regulations partially satisfied by Guidance of ED-153 [EU04, EU08]

3 EUROCAE ED-153 Guidance

20

Chapter 3 of ED-153 provides guidance on how to set up and operate a software safety

assurance system (see chapter 3.3). Chapters 4 to 7 of ED-153 deal with the primary,

supporting and organisational life cycle processes and additional objectives of the

process (see chapter 3.4). This is depicted in Figure 7, where the software development

products (the inputs) are transformed in the lifecycle process to software safety

assurance products (the outputs). The requirements and recommendations demanded by

the guidelines in these chapters are provided in full detail in Annex A of this thesis.

Figure 7: Levels of Guidance provided by ED-153 [EUROCAE09]

3.2 Software Assurance Level

ED-153 introduces the software assurance level (SWAL) as a strategic management

method which is used for allocating the appropriate effort that should be spent on safety

assurance per software component. Hence the software assurance level is an

assessment procedure for software components to define the recommended rigour of the

assurance process throughout the whole lifecycle. The rigour in generating the assurance

evidence should be in line with the risk presented by the software.

The allocation is done on the basis of the likelihood of software malfunction and the

severity of the consequences caused by these malfunctions (see also chapter 2.1.3 for

the definition of hazards). The SWAL does not replace the safety requirements for the

software; it is itself one of the requirements. To be compliant with the SWAL level, the

3 EUROCAE ED-153 Guidance

21

software supplier has to take systematic actions to ensure that sufficient evidence of the

product and process is available. It has to provide the evidence that its software meets an

appropriate level of confidence and assurance in order to contain the risk presented by

the system. [EUROCAE09]

ED-153 offers four levels of software assurance, where the first level (SWAL 1) is the

most rigorous one, followed by three levels where the rigour decreases from level to level.

Table 3 shows the dependency between the likelihood of a consequence (in ED-153 the

consequence is called the ñeffectò [EUROCAE09]) and its severity. For detailed

information on severity classes, likelihoods and examples please refer to the official ED-

153 standard [EUROCAE09].

 Effect Severity
 Class

 Likelihood of
 generating such an effect

1 2 3 4

Very Possible SWAL 1 SWAL 2 SWAL 3 SWAL 4

Possible SWAL 2 SWAL 3 SWAL 3 SWAL 4

Very Unlikely SWAL 3 SWAL 3 SWAL 4 SWAL 4

Extremely Unlikely SWAL 4 SWAL 4 SWAL 4 SWAL 4

Table 3: Allocation of SWAL Levels in accordance with Effect Likelihood and Severity

[EUROCAE09]

In comparison with SIL (see chapter 2.1.5), the SWAL is more focused on software. The

determination does not depend on availability and reliability, but rather on quantitative

and qualitative effects that cause harm to humans or property. Figure 8 provides a

mapping of the assurance levels of IEC 61508 to those of the ED-153 guideline.

Compliance details can be found in Annex A of the ED-153 guideline.

SWAL 1

SWAL 2

SWAL 3

SWAL 4

SIL 4

SIL 3

SIL 2

SIL 1

ED-153 IEC 61508

Partial Compliance

Partial Compliance

Partial Compliance

Partial Compliance

Figure 8: Mapping of SWAL (ED-153) to SIL (IEC 61508) [EUROCAE09]

3 EUROCAE ED-153 Guidance

22

3.3 Software Safety Assurance System

EUROCAE ED-153 [EUROCAE09] defines a complete software safety assurance

system, comprising overall objectives and a software safety process with the following

stages:

¶ Assessment Initiation

¶ Assessment Planning

¶ Requirements Specification

¶ Assessment Validation, Verification & Process Assurance

¶ Assessment Completion

Due to the fact that ED-153 [EUROCAE09] primarily addresses Air Navigation Service

Provider (ANSP), some of the described objectives and tasks within the safety process

are not relevant for the software supplier. Annex B of the guideline provides three

different role and responsibility scenarios to fulfil the above-mentioned objectives and to

achieve conformity with the defined safety process. The least appropriate one is the

scenario, where the ANSP internally performs the software development. The other two

scenarios differentiate between the delivery of a major system and delivering only

software. There are only three extra processes which have to be carried out by the

software supplier, when it delivers a system rather than only software:

¶ Process of showing the isolation of software components

¶ Process for initiating the software safety assessment

¶ Process for analysing the system requirements and system architectural design

Based on its focus, the thesis will further concentrate on the most comprehensive

scenario, in which the software supplier delivers an equipment part of a system which

fulfils the requirements of the ANSP. The context for this scenario is also applicable to the

lifecycle processes which are discussed in chapter 3.4.

3.3.1 Software Safety Assurance System

Table 4 shows the objectives of the software safety assurance system which are

applicable for the software supplier. Those tasks in which the software supplier actually

takes the lead are marked in green. These objectives are derived from the requirements

of the commission regulation (EC) No 482/2008 [EU08] and shall ensure the assignment

of responsibilities to the ANSP and the software supplier. This regulation sets only high-

level criteria which are covered by the objectives of the individual life cycle processes as

well (see chapter 3.4). Due to this fact they are only described by their tasks and are not

mapped within the objective mapping process in chapter 6. [EUROCAE09]

3 EUROCAE ED-153 Guidance

23

Legend: A é Accept; C é Contribute; L é Lead

Objective ANSP
SW

Manufacturer
Objective N°

ED-153

Implementation L C 3.0.1

Requirements Correctness and Completeness A L 3.0.2

Requirements Traceability Assurance A L 3.0.3

Unintended Functions A L 3.0.4

SWAL Allocation L C 3.0.5

Requirements Satisfaction Assurance A L 3.0.6

Configuration Management Assurance A L 3.0.7

Assurance Rigour Objective L C 3.0.8

SWAL Assurance C L 3.0.10

Software Modifications A L 3.0.12

COTS (Commercial Off The Shelf) A L 3.0.13

Isolation L 3.0.14

All On-line Aspects of SW Operational Changes L C 3.0.15

Argument Production L C 3.0.17

Table 4: Software Safety Assurance System Objectives [EUROCAE09]

The tasks within these objectives that are of importance for a software supplier are

[EUROCAE09]:

¶ Requirements correctness and completeness shall ensure that there is a correct

and complete statement of what is required by the software.

¶ Requirement traceability assurance shall ensure that requirements are traced to

the level required by the SWAL.

¶ Unintended functions shall ensure that software implementation does not contain

functions, which may affect safety.

¶ Requirements satisfaction assurance shall ensure that the software satisfies its

requirements by a defined level of confidence.

¶ Configuration management assurance shall ensure that all assurances are derived

from its dependencies.

¶ SWAL assurance shall provide confidence based on arguments and evidence as

defined by SWAL.

¶ Software modifications shall ensure that software changes lead to a re-assessment

of the safety impact and SWAL allocation.

¶ COTS shall ensure that the same level of confidence is provided for software

products that are not developed by the software supplier.

¶ Isolation shall ensure that software, which cannot be isolated, has the same SWAL

as the most critical component allocated.

3.3.2 Software Safety Assurance Process

In addition to the previously shown objectives of the software safety assurance system

(see chapter 3.3.1) there are also roles and responsibility recommendations for the

3 EUROCAE ED-153 Guidance

24

software safety assurance process, which are defined in Table 5 [EUROCAE09]. These

objectives are mapped within the objective mapping process to the integrated process

model (see chapter 4) in chapter 6 and Annex A.

Legend: A é Accept; C é Contribute; L é Lead

Objective ANSP
SW

Manufacturer
Objective
N° ED-153

Software Safety Assessment Initiation

System Description C/A L 3.1.1

Operational Environment C/A L 3.1.2

Regulatory Framework C/A L 3.1.3

Applicable Processes and Guidance C/A L 3.1.4

Risk Assessment and Mitigation Process Output L C 3.1.5

Software Safety Assessment Planning

Software Safety Assessment Approach C/A L 3.2.1

Software Safety Assessment Plan C/A L 3.2.2

Software Safety Assessment Plan Review C/A L 3.2.3

Software Safety Assessment Plan Dissemination C/A L 3.2.4

Software Safety Requirements Specification

Failure Identification C/A L 3.3.1

Failure Effects C/A L 3.3.2

Assessment of Risk L C 3.3.3

Software Requirements Setting C/A L 3.3.4

Software Safety Assessment Validation, Verification and Process Assurance

Software Safety Assessment Validation C/A L 3.4.1

Software Safety Assessment Verification C/A L 3.4.2

Software Safety Assessment Process Assurance C/A L 3.4.3

Software Safety Assurance C/A L 3.4.4

Software Safety Assessment Completion

Document Software Safety Assessment Process
Results C/A L 3.5.1

Software Safety Assessment Documentation
Configuration Management C/A L 3.5.2

Software Safety Assessment Documentation
Dissemination C/A L 3.5.3

Table 5: Software Safety Assessment Process Responsibilities [EUROCAE09]

3.4 Lifecycle Processes

In addition to the objectives for a software safety assurance system (see chapter 3.3),

EUROCAE ED-153 defines objectives for the primary, supporting and organisational

lifecycle processes [EUROCAE09], which are listed in Table 6. Some of these sub-

processes are considered as out of scope for this thesis, which mainly focuses on the

primary process development and its supporting processes. These considered processes

3 EUROCAE ED-153 Guidance

25

are also in line with the integrated process model ISaPro® (see chapter 4), which is the

basis for the mapping process of chapter 6.

Process Applicable

Primary Lifecycle Processes

Acquisition Process

Supply Process

Development Process V

Operation Process

Maintenance Process
Supporting Lifecycle Processes

Documentation Process

Configuration Management Process V

Quality Assurance Process V

Verification Process V

Validation Process V

Joint Review Process V

Audit Process

Problem Resolution Process
Organisational Lifecycle Processes

Management Process V

Infrastructure Process

Improvement Process

Training Process

Table 6: Lifecycle Processes of ED-153

4 Integrated Process Model

26

4 Integrated Process Model

In order to be compliant with safety standards, various approaches to process-oriented

models and lifecycles are described in literature. Some of these approaches are lifecycle

models that are derived from several standards (see chapter 2.3); some of them are

procedures that are proposed by different authors (e.g. [Sto96]). In addition, further

standards are demanded by industry such as CMMI (Capability Maturity Model®

Integration) or SPICE (Software Process Improvement and Capability Determination).

In order to handle all the required standards, the Vienna Institute for Safety & Systems

Engineering (VISSE) developed an integrated process model called ISaPro®. It provides

a framework for meeting the criteria of the required standards in one process model.

Furthermore, ISaPro® provides an approach for meeting the objectives in a systematic

way. This ensures that the required activities are done at the right time in the right phase.

[TKH12]

The approach consists of three in-parallel, well synchronised lifecycles and their

supporting processes. ISaPro® includes all the necessary disciplines for developing a

safety-critical system. By synchronising the individual processes, this framework further

ensures that all lifecycles have the necessary interdependencies between them. On the

timeline the whole procedure model is divided into four sections that are called ñspacesò

[TKH12]. The problem space is performed in the pre-project phase; the modelling and

solution spaces are executed during the development project. After completion of the

development project, specifically the system development, the model is continued in the

form of system maintenance in the operation space. [TKH12]

Figure 9 depicts how the different lifecycles are synchronised over time within the four

defined spaces. If the targeted system is complex, further analyses have to be done. To

break down the software part into software components, the light-coloured processes

within the solution space are necessary.

PHI FHE PSSE SSE OSSE

Problem Space Modeling Space Operation Space

Concept
Req.
Eng.

Design
Component Design, Implementation,

Integration & Test
Maintenance Disposal

System Safety
Lifecycle

Engineering
Lifecycle

SSRA SSDA

Solution Space

SW
Req.

SW
Arch.

Project
Initialisation

Project
Planning

Project
Controlling

Proj.
Close-
Down

Maintenance
Project

Management
Lifecycle

Configuration Management, Quality Management
Verification & Validation

Support
Processes

Development Project Maintenance Project

Figure 9: Adapted ISaPro
®
 Framework [based on TKH12, TSS12]

4 Integrated Process Model

27

During the problem space, the main aim is to identify the costs and the lead time of the

project. One of the main cost drivers in safety-critical development projects is the targeted

SIL (see chapter 2.1.5), which is identified in the preliminary hazard identification (PHI).

Within the modelling space the requirements and design of the system have to be

thoroughly defined. Based on those definitions, the safety objectives and derived

requirements are identified in the functional hazard evaluation (FHE) and preliminary

system safety evaluation (PSSE) processes. These outputs are considered in the project

planning process, where the magic triangle (time, cost and scope) of the project is

defined [CG06]. The solution space ensures that all safety objectives and requirements

will be fulfilled by coordinating the planned activities. After the development of the system

is completed, usually the phase of operation starts. Due to the focus of this thesis on the

development of systems, this phase will be considered as out of scope. [TKH12]

The following sections will briefly describe the main aims and activities of each lifecycle

and how they interact with each other as a full framework in order to ensure the safety

goals are met. The description starts with the project management lifecycle, followed by

the engineering lifecycle, which is necessary to deliver inputs for the safety activities,

described in the processes of the safety lifecycle. The chapter concludes with a brief

introduction to the support processes that facilitate the three lifecycles.

4.1 Project Management Lifecycle

In accordance with the focus on development, the project management lifecycle consists

of four processes: the initialisation, the planning, the controlling and the close-down

processes. The use of project management is necessary for transforming a complex

project into manageable activities in order to ensure that the magic triangle is balanced all

the time. [Gar06]

The project initialisation process includes the determination of the scope of the project, a

preliminary budget and a time schedule. These outputs are heavily dependent on the pre-

estimated SIL, which is identified in the PHI, and therefore must include all prospective

safety activities [TKH12].

The planning process comprises a detailed plan that includes all the work packages

within the project lifecycle. These packages are again dependent on the required safety

activities, which were defined during the safety planning process [TKH12]. In addition, the

parallel defined system requirements and design will further increase the accuracy of the

project plan.

The controlling process includes all the activities necessary to manage deviations of the

prospective plan. It consists of periodically planned controlling meetings, in which the

planned activities are compared with the current status of the project. In the case of

deviations, steering measures have to be arranged in order to keep the project on track.

4 Integrated Process Model

28

The project close-down process ensures that the outstanding work is done, the project

documentation is finished and the scope for the post-project phase is defined. In addition,

the project team has to transfer all the lessons learned into the line organisation. Finally

the team itself has to be dissolved.

4.2 Engineering Lifecycle

The engineering lifecycle of the ISaPro® integrated process model consists of the creation

of a concept, the requirements engineering, the design, the realisation and the operation

phase (see Figure 9). This thesis focuses on the planning and development phases,

excluding the processes of maintenance and disposal. The processes are based on

traditional system development approaches such as the V-model (see chapter 5.5.1).

The technical concept provides a rough system design, based on the available

information supplied by the customer or the project owner. It depicts the technical

realisation, which is a mixture of the customersô needs and their technical solutions.

[TSS12]

The requirements engineering phase is the basis for the project. It defines what

stakeholders expect from the system in order to meet their needs [HJD10]. This includes

first of all the functional requirements, which define what set of functions the system

should offer. In addition to that, the non-functional requirements also have to be defined

which describe how the system should achieve these predefined functions. These non-

functional requirements could be, for example, requirements regarding availability,

performance or even constraints. One of the most important non-functional requirements

class is the class of the safety requirements, which will be gathered during execution of

the FHE (see chapter 4.3.2) [TKH12]. Especially during the development of safety-critical

systems or applications they should be treated in a very particular way: apart from being

identified and defined they should furthermore be traced throughout the whole lifecycle

[HJD10].

These defined requirements are then inputs for the system design. The aim of this

process is to define a technical solution which meets all requirements including the

important safety requirements.

Before starting the realisation process, further tasks must be carried out in advance,

especially when a complex system which needs further detailed analysis is identified. In

such a situation there is a need for requirements engineering and design on a component

level [SW01]. These tasks can also be seen as parts of the realisation process, but in the

case of a software system there are designated processes called ñsoftware requirements

engineeringò and ñsoftware designò [TKH12]. They basically include the same tasks as

the system level, but within the scope of software.

The final process within the solution space is the realisation, which consists of several

sub-processes such as the optional component design and the real implementation,

4 Integrated Process Model

29

followed by integration and final tests [TKH12]. Component design is, as previously

mentioned, the process of further dividing the system into parts in order to manage very

large and complex systems more easily. Implementation is the conversion of the planned

ideas into a working system ï in the case of software, this is the coding itself. During

integration, the divided parts of a system (e.g. hardware and software) are put together in

order to assemble the functionally working system. The test sub-processes are the

verification of the predefined requirements in order to ensure that the system is working

correctly according to the specifications.

Within the whole engineering lifecycle, traceability is of utmost significance. Therefore all

requirements have to be traced to documented design decisions and the corresponding

verification and validation activities. When performing detailed analysis on the software

level, the tracing from system level to software level is of the utmost importance.

4.3 Safety Lifecycle

The safety lifecycle ensures compliance with the required safety standards such as IEC

61508, ISO 26262 or EUROACE ED-153 by including their required activities into the

processes of the lifecycle.

As Figure 9 shows, the safety lifecycle consists of five main and two optional processes.

The lifecycle starts with the preliminary hazard identification (PHI) followed by the

functional hazard evaluation (FHE) and the preliminary system safety evaluation (PSSE).

When some system complexity is met that needs more detailed analysis on the

component level, the two optional processes have to be performed. In the case of

software, these additional software safety lifecycle processes are the software safety

requirements analysis (SSRA) and the software safety design analysis (SSDA). These

processes are similar to the FHE and the PSSE, but within the scope of software only.

The system safety evaluation (SSE) is the subsequent process within the lifecycle, and is

performed until the development of the system has finished. After the system has gone

into operation, the operational system safety evaluation (OSSE) is initiated. Due to the

focus of this thesis, this last process is considered as out of scope. [TKH12, TSS12]

Each of the main safety processes answers a different question regarding safety, as

shown in Figure 10:

PHI FHE PSSE SSE

What are the high-
level hazards?

How safe does the
system need to be?

Is tolerable risk achievable
with the proposed system

design?

Does the system as
implemented achieve

tolerable risk?

SSRA SSDA

How safe does the
software need to be?

Is tolerable
risk achievable

with the proposed
software architecture?

Figure 10: Questions of the Different Safety Processes [based on TS10, TSS12]

4 Integrated Process Model

30

The following sections will describe the six processes depicted in Figure 10, which are

applicable during the development of the system.

4.3.1 Preliminary Hazard Identification (PHI)

Based on a rough technical concept of the system, designed and developed in the

engineering lifecycle, the PHI is started on the top level at a very early stage. This helps

in taking appropriate actions such as redesigning the system to reduce or remove

hazards or even challenging the whole system concept. The goal of the process is to

identify all theoretically potential hazards by knowing the rough concept and main

business use cases. This identification could be achieved using widely known methods

for idea generation such as brainstorming, reviewing former projects or using checklists.

The list of identified hazards should consist of their causes, their possible consequences

(see Figure 3), a first risk assessment and presumable risk mitigation strategies. By

having the full list of preliminary identified hazards it should be feasible to allocate a SIL

to the system. This is done in order to estimate how further detailed safety activities

should be executed. [Sto96, TKH12, TSS12]

4.3.2 Functional Hazard Evaluation (FHE)

The aim of this process is to identify all of the system functions which could lead to one or

more hazards. Based on the output of the PHI in the form of a preliminary hazard list, and

by including the requirements of the system, it is possible to make a statement about how

safe the system must be. Possible methods supporting the achievement of this goal are a

PHA (see chapter 2.4.1) or a HAZOP (see chapter 2.4.3). [TSS12]

The main outputs of the process are the definitive SIL, an extended list of hazards (which

was started in the previous PHI process) and, based on that list, the derived safety

requirements for the system. These safety requirements are necessary in order to

achieve the safety goals and prevent the identified hazards from occurring or at least to

mitigate their risks to an acceptable level. Due to the fact that system requirements

depend on safety requirements and vice versa, the system requirements have to be

updated when safety requirements are defined. [TKH12, TSS12]

4.3.3 Preliminary System Safety Evaluation (PSSE)

In the PSSE process, the system design is analysed in terms of whether the safety

requirements and an acceptable level of risk are met. The process consists of several

analyses on the subsystem, component and software levels for the purpose of analysing

the interdependencies between them. This is done with the help of methods such as

FMEA (see chapter 2.4.2) and/or FTA (see chapter 2.4.4). [TS10, TSS12]

A further part of the investigation is the evaluation of the system design itself and the

question of whether additional hazards are raised by that design. This will probably result

in new, derived safety requirements, which might necessitate an update of the safety

requirements and the system design itself. If so, the PSSE has to be repeated until the

4 Integrated Process Model

31

system design meets all safety requirements and does not raise any new hazards. In

addition to the definitive set of safety requirements, a preliminary safety case is created.

[TKH12, TSS12]

4.3.4 Software Safety Requirements Analysis (SSRA)

The SSRA inspects all software and interface requirements to detect faults and defects,

which could lead to software hazards. As well as the software parts, all hardware parts

which could trigger software malfunction are also taken into account. Additionally, all

software-related safety requirements are verified in terms of their correctness and

completeness. To identify all relevant safety-critical functions at an early stage, a Safety

Critical Function List (SCFL) is created on the basis of predefined objective criteria.

[TSS12]

The main aim is to identify software safety requirements in order to meet the required SIL.

In addition, all the safety-critical functions of the software have to be documented.

4.3.5 Software Safety Design Analysis (SSDA)

The SSDA is, like the PSSE but on the software level, the verification of whether the

software safety requirements are adequately covered in the software design. Additionally,

the analysis should detect whether the software design introduces new hazards.

Common methods for supporting this process are FMEA and FTA, which are especially

tailored to software and therefore performed on a qualitative level. [TSS12]

4.3.6 System Safety Evaluation (SSE)

The SSE is the last safety process within the development of the system and is done in

parallel with the detailed design and implementation. This process should ensure that

previously defined safety requirements and the design aspects have been correctly

implemented in such a way that the remaining system risks are below an acceptable

level. In order to prove this correctness of implementation, verification methods and tests

are used. The safety case which was started in the previously process has to be

continued using all available information. [TSS12]

The SSE is performed periodically during the whole system lifecycle, whereas the

process is often called the ñoperational system safety evaluationò (OSSE) after the initial

development has finished [TSS12]. This process is closely connected to the safety case

document, which should be kept up to date until the disposal of the system, especially

when changes are made to the system [TSS12].

4.4 Support Processes

ISaPro® recommends having at least three support processes including configuration

management, quality assurance and verification and validation. In specific cases, change

4 Integrated Process Model

32

management is considered as a separate process, but it can also be part of the

configuration management [CMMI10]. These processes support all three lifecycles by

ensuring the integrity and quality of work.

The exact purpose of configuration management is to achieve and ensure the integrity of

work through several tasks. The first task is to identify the work products which should be

put under configuration management. During the lifecycle of the project, changes to those

items have to be controlled, documented and reviewed. Work products can be any output

within the whole project lifecycle, e.g. plans, specifications, requirements, documented

design, code, etc. In the majority of the cases, at given points in time, e.g. after a review,

a work product is marked as a valid baseline (release). This indicates that this version of

the work product is a stable basis for continuing evolution of the configuration item.

[CMMI10]

Quality assurance consists of two main tasks: the monitoring of the processes and the

evaluation of their effectiveness. This can be achieved by reviewing all defined work

products and processes on a regular basis. It has to be defined which of the processes

and work products should be reviewed and also how and when the review should take

place. Of particular importance in the definition of work products and processes are the

safety-critical ones. All tasks belonging to quality assurance have to be performed either

by an independent department or at least an independent person. [TSS12]

The last support process is the verification and validation. Verification ensures that the

system meets its requirements. This is done with the help of reviews, inspections, static

code analysis and tests. Validation ensures that the system fulfils its intended use as

expected by the stakeholders and regulations. This also includes the proof that all

specifications required by the safety standards are fulfilled. [TSS12]

5 Agile Software Development Methods

33

5 Agile Software Development Methods

In the late 1990s, new approaches to software development started to emerge as

alternatives to the traditional development methods (described in chapter 5.5.1) which

were widely used at that time. The first representatives of these so-called agile

methodologies introduced completely new ways of approaching software development.

ñAgility means that you are faster than your competition. Agile time frames are

measured in weeks and months, not years.ò

Michael H. Hugos [Hug09]

Although different approaches were introduced by different people, they were all based

on similar beliefs and ideas. The central topic was the creation of a new, more efficient

way of developing software in terms of a lightweight and more flexible process. At the

same time, this process should ensure high quality software products. The term >agile<

was adopted as a kind of umbrella term for all those new approaches which fitted in with

the common values and principles, which are introduced in chapter 5.1. The best-known

approaches which put these values and principles into practice are described in chapter

5.3.

Nowadays, agile methods are widely accepted as a development approach for software

[VerOne13]. A German study has pointed out that the majority of companies use either

traditional or agile approaches, or even hybrid forms depending on the kind of project that

has to be accomplished [Kom12]. This course of action makes the most of the

advantages of all the various traditional and agile approaches. There are also empirical

data and case studies available on their benefits compared to traditional methods. The

most applicable ones are presented in chapter 5.4.

5.1 Values and Principles

In February 2001, seventeen independent representatives of various software

development and programming methodologies committed themselves to four core values,

called the ñAgile Manifestoò [AgiAll12]. These values are supplemented by twelve

principles which further explicate what it means to be agile. Both the values and principles

formed the basic framework for the birth of the Agile Alliance and are still valid nowadays.

This Agile Alliance was founded at that meeting. It is a non-profit organisation which has

committed itself to advancing agile development principles and practices. [AgiAll12]

5.1.1 Values

Manifesto for Agile Software Development:

ñWe are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

5 Agile Software Development Methods

34

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.ò

 Ward Cunningham [Cun01]

The introductory paragraph of the quote makes it clear that this group of people were

experienced software development practitioners who thought that they had discovered

some new and probably better ways of developing software. This first paragraph is

followed by the four main principles which prioritise values. The concluding paragraph is

intended to indicate that the values on the right cannot be ignored completely. Rather, it

points out, there has been a shift of priorities in favour of the left-hand values.

Individuals and interactions over processes and tools

The first main value is that individuals and interactions are valued more than processes

and tools. This should indicate that these new kinds of methodologies focus on people

and not explicitly on their roles as stated in the organisation chart. Team members should

use processes and tools as aids to leverage the effects of agile development. Another

important fact is that people are not as easily exchangeable as other resources such as

infrastructure and similar elements. The direct and verbal interactions between well-

educated and trained team members are necessary for new and sophisticated solutions

where all dependencies are considered. [Coc06, WB10]

Working software over comprehensive documentation

The second value points out that a working system is ruthlessly honest and therefore

shows exactly, what has been achieved so far. Working software can even be deployed

and operated by the customer, while documentation is primarily an aid for the team

members to specify the unreliable future as well as possible [Coc06]. It does not tell the

user anything about the progress of development and therefore only as much

documentation as is actually necessary should be created.

Customer collaboration over contract negotiation

This third core value should usher in a new era in which the customer has an amicable

relationship with the contractor beyond organisational boundaries. This is indicated by the

customer having a voice in joint decision-making and an involvement in development

planning and the approval of the recently delivered work. Contracts are of course useful,

but experience shows that in most cases the system specified in the contract does not

exactly correspond to the system the customer and particularly the end-user needs

[WB10].

5 Agile Software Development Methods

35

Responding to change over following a plan

The final value addresses the need to respond to changes as fast as possible. Creating

and referring to a plan is reasonable; e.g. each agile method has a development planning

phase, but the plan has to contain mechanisms for dealing with changing priorities

[Coc06]. It simply does not make sense to follow a plan when it is clear that it cannot be

met anymore.

5.1.2 Principles

In addition to the core values of the agile manifesto (see chapter 5.1.1), the practitioners

of agile software development committed themselves to twelve principles, which indicate

what it is to be agile.

This masterôs thesis will not list all of them in complete detail; rather it will concentrate on

the basic statements based on the principles of the Agile Alliance [AgiAll12]. The all-

embracing statement of principles can be found on the website of the agile manifesto

[Cun01].

One principle is to satisfy the customer by means of an early and frequent delivery of

valuable software. In order to achieve this statement, two more principles have to be

considered. One is about working software itself as the main measure of progress and

the second one is about the frequent delivery of that working software. Basically, the

combination of all three principles should enable early feedback from the customer or

end-users in order to adjust development based on those inputs to achieve the main aim

of customer satisfaction.

This leads directly to another principle, whereby the agile process welcomes changing

requirements, even late in development. Without this principle, customer feedback cannot

be integrated into the software. There have to be mechanisms available for dealing with

changing priorities.

These principles are followed by others which deal with individuals. The first is that

business people and developers should work together on a daily basis within the scope of

the project. This is emphasised by the statement on the most efficient and effective

method of conveying information to and within the project team: the face-to-face

conversation. Another principle of dealing with people is that the project should be built on

motivated individuals. This can be achieved by providing them with the necessary

environment and support, and the trust that they will get the job done.

In addition, there are some statements about the development techniques themselves.

One is that the best architectures, requirements and designs emerge from self-organised

teams. This indicates on the one hand the responsibility of the team and on the other

hand the fact that architecture, requirements and design are not made prior to

implementation, but rather they emerge during this process. Another principle is that

continuous attention should be paid to technical excellence, because only good design

5 Agile Software Development Methods

36

enhances the agile approach. In order to accomplish this excellence, some common

technical practices have become accepted in various agile approaches (see chapter 5.2).

Then there is a principle regarding the promotion of a sustainable development so that

sponsors, developers and users are able to maintain a constant pace. This statement

deals with the term project efficiency. It indicates that long hours of work by the team

should be avoided because it will make them tired, which in fact will lead to more errors in

their work and thus a reduced pace in the following period [Coc06].

Another principle deals with the term simplicity. This is defined as the art of maximising

the amount of work not done [Cun01]. This has to be achieved within the boundary

condition of delivering valuable and qualitative software. The challenging fact is that

making things simple is quite difficult, as Pascal noticed in the 17th century:

ñI have made this letter longer than usual, only because I have not had time to

make it shorter.ò

Blaise Pascal [translated from French]

The concluding principle is about the importance of reflecting on how to become more

effective at regular intervals. This should ensure that behaviour is adjusted accordingly

via of the reflection work of the team. It is the basic requirement for a continuous

improvement process which evolved from the Japanese term ñKaizenò and is nowadays

part of almost every quality management system [Ima86].

5.2 Technical Practices

Some technical practices have become accepted across various approaches (see

chapter 5.3) because of their support for a lean and agile process. This chapter provides

an overview of how to be agile on the operative basis of the process.

5.2.1 User Stories

In the agile process, requirements are necessary to estimate the effort required in order

to give the stakeholders the opportunity to prioritise depending on those estimated

values. Furthermore, requirements should ensure clarity between the customer and the

developers. In order to do so, the requirements are written as user stories. [WB10]

In most cases, user stories follow structured templates, like these [Coh09]:

ñAs a <type of user>, I want <some goal> so that <some reason>.ò

ñIn order to <achieve value>, as <type of user>, I want <some goal>.ò

These user stories should be written initially by the user itself or at least by ñuser proxiesò

who represent the customer or the end-user in the project [Coh04]. Such persons can be

5 Agile Software Development Methods

37

end-users, managers, salespersons, domain experts or business analysts. Afterwards,

the user stories are improved in a discussion process including the customer and the

contractor by adding necessary details and remarks [WB10].

5.2.2 Test-driven Development

Another technical practice is test-driven development (TDD). In traditional software

development approaches, each part of the software is usually designed first, then coded

and finally tested during the verification phase. When defects are detected in this phase,

the code is corrected in order to repair the defects that occurred. Then these changes are

verified again.

The process of test-driven development turns this way of thinking around and starts with

the implementation of a test in order only to write the code, which is necessary to achieve

the clear goal of passing the test. Design is carried out in the final stage, during which the

code is restructured in such a way that the simplest design is the result. This last step is

also called refactoring and is explained in chapter 5.2.3. [Kos07]

This previously described cycle, which is depicted in Figure 11, is repeated for every test

that has to be implemented.

Figure 11: Test-driven Development Cycle [Coh09]

This process automatically results in comprehensive code coverage through automated

tests, which further helps to avoid defects in the code when adding new functionality

[Kos07].

5.2.3 Refactoring

As stated in chapter 5.2.2, refactoring is the last stage within the test-driven development

cycle. Refactoring is the process of changing a software system without altering the

external behaviour of this part of the code in order to improve its internal structure. It is a

way to minimise the risk of new defects occurring in the future by cleaning up the code.

This process of cleaning up the code ultimately results in the final design of the software

component [FBB+99]. A basic prerequisite for refactoring is high code coverage provided

5 Agile Software Development Methods

38

by unit tests in order to be sure that the software system is running as expected after the

redesign [Kos07].

According to Martin, refactoring also helps to prevent ñcode rotò, which is a term for a

typical syndrome within software where the code is allowed to decay until the decision is

made that it has to be completely rewritten [Mar08].

5.2.4 Evolutionary Design

This technical practice is more of an approach and is basically the result of using test-

driven development (see chapter 5.2.2) and refactoring (see chapter 5.2.3). The idea is to

evolve the design as new requirements arise. Therefore software coding is initiated with a

simple design, e.g. by using TDD. Afterwards this design is changed only when

requirements force this step. Necessary changes are then achieved by refactoring and

automated tests. [Els07]

5.2.5 Continuous Integration

Continuous integration is an extension of the use of nightly builds [Coh09]. The basic idea

is that the written code is checked into the source code repository a few times a day in

order to ensure that software integration is continuously tested by automated integration

builds. It is important that all procedures after the check in, e.g. building software, running

automated tests and sending notifications, are executed automatically. [DMG07]

5.2.6 Pair Programming

Pair programming (PP) is the term for a practice whereby two developers sit next to each

other at one machine. It is a dialogue between two people simultaneously implementing

the requirements including analysis, design, coding and testing [BA04]. This method

should not be used all day long; it should rather be used for complex and risky parts of

the software project [Coh09]. A further recommendation is to switch partners frequently in

order to transfer knowledge throughout the team. Studies have shown that pair

programming slightly increases costs, but demonstrably contributes towards enhancing

quality [DAS+07].

5.2.7 Collective Code Ownership

The basic principle of collective code ownership is shared code. It basically states that the

entire team owns the whole source code and therefore is responsible for it. Everyone can

change code in any part of the system at any time. Automated tests ensure that the

correct operation of the code is not affected by a developer changing the code who is

unfamiliar with the software module. This mutual trust ensures that a developer is able to

do all the tasks which are necessary to accomplish the user story. [BA04, Els07]

5 Agile Software Development Methods

39

5.3 Approaches

Various approaches have emerged in connection with those values, principles and

technical practices during the last 15 years. Extreme Programming (XP) was probably

one of the first approaches in agile software development, whereas today the most

widespread approach is definitely Scrum [BN07, VerOne13]. This is particularly based on

the fact that Scrum is very management-oriented. Therefore a lot of companies use

variants of or approaches based on Scrum [BN07] or even include other practices like XP

in the Scrum process. These two approaches are briefly described in the following two

sections.

Other relevant approaches [VerOne13] that will not be introduced in this chapter are

feature driven development (FDD) [CLD99, Ric12] and the software variant of Kanban

[And10], a process which originated in automotive production [GM03].

5.3.1 Extreme Programming (XP)

Extreme Programming consists of a collection of the most successful practices and was

first introduced by Kent Beck in 1999 [BA04]. In addition to the practices, this approach

also describes their interdependencies based on the agile values [WB10].

The approach is based on values and principles which are basically in line with those of

the agile manifesto (see chapter 5.1). These values should be implemented by primary

and corollary practices. Due to the fact that the approach needs to be described briefly

here, only the primary practices are listed. For further details refer to [BA04]:

¶ Sit Together

¶ Whole Team

¶ Informative Workspace

¶ Energized Work

¶ Pair Programming

¶ Stories

¶ Weekly Cycle

¶ Quarterly Cycle

¶ Slack

¶ Ten-Minute Build

¶ Continuous Integration

¶ Test-First Programming

¶ Incremental Design

Kent Beck [BA04]

5.3.2 Scrum

In contrast to Extreme Programming (see chapter 5.3.1), Scrum is a generic

organisational management approach. The process description gives no specifications or

guidelines on how to design, code and implement software, and basically Scrum can be

used for non-software projects as well [Coh09]. Because of its freedom in terms of

technical practices, Scrum is often combined with other agile methods such as Extreme

Programming or Kanban. This latter combination is also called ñScrumbanò [Lad09].

5 Agile Software Development Methods

40

Scrum arranges all its practices around an iterative, incremental process skeleton as can

be seen in Figure 12. In the first step, the role of the product owner creates a prioritised

list of user stories which is called the ñproduct backlogò [Sch04]. During sprint planning,

the planning for the next iteration, the team pulls a subset of these stories ï which they

think that they will be able to accomplish within the next iteration ï from the top of the

product backlog. This subset is called the ñsprint backlogò [Sch04]. During this sprint,

which is usually a fixed time box of one to four weeks, a daily scrum meeting is held in

order to check the status of the team. Along the way the role of the so-called Scrum

master, who is a kind of method coach, keeps the team on track. At the end of the

iteration the product should be potentially shippable. The process is formally closed by a

sprint review where the accomplished user stories are demonstrated and a team

retrospective takes place. After the iteration is finished, the next one starts with sprint

planning and so on. [Sch04, ScrAll12]

Figure 12: Scrum Framework [Lac12b]

5.4 Scientific Research

A large amount of scientific research about agile methodologies has been published over

the past few years. This chapter will briefly introduce the most significant studies.

One study was carried out by Michael Mah in 2008 [Mah08], in which he made an

exhaustive comparison of more than 20 agile projects on more than 7,500 traditionally

completed projects, using a contemporary worldwide database. It points out that these

agile projects are 16 % more productive and have a 37 % faster time to market at a

statistically significant level of confidence. [Mah08]

The second study was published by David Rico, also in 2008 [Ric08]. He carried out a

survey based on 69 published academic and research papers to evaluate whether agile

methods impact the return on investment (ROI) of a project. The results showed that agile

5 Agile Software Development Methods

41

methods are almost as good as the best traditional models, which according to this study

are the Personal Software Process (PSP) and the Team Software Process (TSP). In

comparison with heavier traditional methods like the Capability Maturity Model®

Integration (CMMI) or ISO 9001, agile methods had a higher average ROI. [Ric08]

While these first two studies focused on whether and how projects were mastered better

with the adoption of agile methods, a study by Kruchten [Kru04, Kru10] tried to identify

the optimal conditions for succeeding with agile methods. Kruchten describes this ideal

context as the ñagile sweet spotò [Kru04, Kru10]. Based on his experience as a consultant

to companies adopting agile methods, he defined this sweet spot by the following criteria

[Kru04, Kru10]:

¶ Co-located small teams of ten to fifteen people to facilitate face-to-face

communication

¶ Customer availability to get fast feedback and decisions in order to increase their

satisfaction

¶ New development or so-called ñgreen fieldò projects in order to avoid maintaining

legacy source code [Kru10]

¶ Interactive types of applications like business applications (in contrast to

embedded real-time systems)

¶ Low to medium criticality in terms of worst case is losing money (and not to harm

humans or property)

¶ Short lifecycles of weeks to months and not years

This report does not indicate that projects outside the sweet spot would not work, but it

might be that those projects face challenges that have to be overcome. Possible solutions

could be the adaption or tailoring of agile processes, but in some cases the result will be

that agile methods are just not suitable for that particular project. [Kru10]

5.5 Interdependencies with Traditional Approaches

This section is intended to give a brief overview of traditional software development

lifecycles and their interdependencies with agile approaches. While chapter 5.5.1

introduces the two most familiar approaches within traditional software development,

chapter 5.5.2 identifies approaches targeting the combination of agile and traditional

procedure models.

5.5.1 Introduction to Traditional Approaches

Due to the focus of this thesis on safety-related software development, the selected

approaches are the waterfall model and the V-model. While agile methods use an

iterative approach, these two models use a sequential and plan-driven approach,

respectively, to developing software. This difference makes it difficult to compare them.

As already highlighted in chapter 5.4 there is no simple answer in finding the best

procedure model or approach. All of them have their advantages and therefore each

5 Agile Software Development Methods

42

potential software system has to be evaluated before starting development in order to

determine the most suitable approach.

The waterfall model, invented by Royce [Roy70] in 1970, was the very first approach

within software development. Royceôs model is based on a sequential approach where

the completion of one development activity allows its successor activity to begin [Roy70].

Figure 13 depicts the core lifecycle of the model with interactions between consecutive

development activities or phases.

Figure 13: Waterfall Model [Roy70]

The major advantage of this model is the straightforward and very structured approach,

which is very efficient when requirements remain relatively stable over the project time

[Boe02]. If there are changing requirements this model becomes inefficient in terms of

total costs. While the costs of change increase in quite a linear way when using agile

methods in combination with test-driven development and refactoring (see chapters 5.2.2

and 5.2.3), the costs increase exponentially over the course of the development lifecycle

when using the waterfall model [Els07, WB10]. Figure 14 depicts this diverging

development of cost per change.

Figure 14: Cost of Change over Time using the Waterfall or Agile Procedure Models [Els07]

5 Agile Software Development Methods

43

The V-model was introduced by Boehm [Boe79] in 1979, just a few years after the

waterfall model. The author focuses on the aspects of verification and validation and their

context in the software lifecycle. Boehm points out that the initial definition of

requirements and design in various levels of detail is linked to verification and validation

activities after implementation. Therefore verification and validation activities can be put

on the right side of the model in line with the definition on the left side as depicted in

Figure 15. [Boe79]

Figure 15: V-Model [Boe79]

Such sequential approaches are also required when dealing with project governance

[Coh09], which is used for high-level control of projects in the project portfolio of an

organisation. This project overview is often achieved by stage-gate processes, where the

software development has to pass various gates along the project lifecycle [Coo08] as

depicted in Figure 16. It helps top management to monitor projects effectively, e.g. for

forecasting whether a project will exceed its budget or similar issues.

Figure 16: Stage-Gate
®
 Approach [Coo08]

5 Agile Software Development Methods

44

5.5.2 Combination of Agile and Traditional Methods

This section gives a brief overview of how agile approaches are combined with traditional

ones in order to meet particular requirements. These adapted procedure models are

mainly required by development projects that conflict with agile methodologies. Therefore

the development approach has to be adjusted in order to fit the context of the project.

When it comes to safety-critical software systems, agile methodologies have to be

adapted in order to suit the objectives defined by standard specifications.

The most familiar adaptation of agile procedure models is mixing them with sequential

development methods. According to Sliger [Sli06] there are three different scenarios:

¶ Waterfall-up-front

¶ Waterfall-at-end

¶ Waterfall-in-tandem

Regarding the first scenario (waterfall-up-front), there are dozens of reasons why some

documents such as a project plan or specifications are needed before starting a project or

software development. Some documents might be required by internal parties, e.g. by the

management for releasing the budget, or by external parties, e.g. by an authority for

confirming compliance to a standard. Regardless of the kind of reasons for which this is

necessary, Cockburn [Coc00] recommends generating documentation that is ñbarely

sufficientò in order to meet agile values and principles (see chapter 5.1). These upfront

tasks can be achieved either ahead of the first iteration or within it as the first backlog

item [Sli06]. Besides the fact that this preliminary work provides necessary information for

the main stakeholders, it helps the agile team to develop a product vision by compiling

the specification [Sli06].

The second scenario (waterfall-at-end) is designed for software projects that need a

designated preparation phase in order to achieve tasks that cannot be managed within an

iteration. Such a task could be a separate verification and validation by dedicated and

independent teams of quality assurance people or even external groups [Coh09]. Another

possibility could be an approval process required by an authority or a standard

specification [Sli06].

The third scenario (waterfall-in-tandem) is the most complex one, dealing with software

development projects that are comprised of more than a single team, using different

development approaches [Coh09]. This approach needs a lot of communication and

coordination among all teams so that they can pull together. Most likely the largest

barriers are the different value sets of the teams, which could regularly result in conflicts

[Coh09].

Regardless of which of those three previously mentioned scenarios is used, to be truly

agile West [Wes12] recommends pushing the agile approach (light blue activities) as far

to the edge as possible, as depicted in Figure 17.

5 Agile Software Development Methods

45

Figure 17: Combination of Waterfall-up-front and Waterfall-at-end [Wes12]

6 ED-153 Objective Mapping

46

6 ED-153 Objective Mapping

This chapter describes all necessary activities within the development of safety assured

software based on the objectives raised by EUROCAE ED-153 [EUROCAE09]. In order

to make sure that the objectives of the ED-153 are fulfilled, a mapping of these objectives

to the relevant processes of the ISaPro® (see chapter 4) framework is necessary. For this

mapping process only the software safety assurance system (see chapter 3.3) and the

applicable lifecycle processes (see chapter 3.4) of ED-153 are considered as in scope.

The aim of this mapping process is a defined way of working including all necessary

activities that have to be conducted in order to be compliant with ED-153.

6.1 Objective Mapping Method

Figure 18 depicts a model of this mapping process. This method should ensure that the

overview of the way of working does not get lost due to the multiplicity of various

objectives. In addition the result provides a process framework including activities

ensuring compliance with EUROCAE ED-153.

EUROCAE ED-153 Guidance

Softw
are S

afety

Assurance S
ystem

Primary Lifecycle

Processes
Organisational

Lifecycle
Processes

Supporting

Lifecycle

Processes

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N° Obj N°

Obj N°
Obj N°

Obj N°

Obj N°

Objective Mapping

Process

ISaPro® Process Framework

Figure 18: Objective Mapping Process

6 ED-153 Objective Mapping

47

The realisation of this mapping process is carried out by the following activities:

¶ First, each activity (or also sub-objective) of the ED-153 objectives is mapped to a

process of the ISaPro® process model based on activity comparison. A detailed

analysis on which sub-objective is matched to which process is available in Annex

A.

¶ In the case that no activity of the ISaPro® model specifically indicates the activity of

the objective, an existing activity will be expanded or a new activity will be created

(see comment columns in Table 10, Table 11, Table 12 and Table 13 in Annex A).

¶ Creation of compacted tables for each category of lifecycle processes (safety

assurance, primary, supporting and organisational processes) (see summary

chapters in Annex A).

¶ Creation of a comprehensive list of activities per process of the ISaPro® framework

which are necessary to achieve the whole number of objectives (see Annex B).

6.2 Integrated Process Lifecycle Overview

This section intends to give an overview of the mapping analysis results of Annex A in

order to have the full set of requirements for an integrated process lifecycle. Table 7

depicts the results in tabular form, where the ISaPro® processes are on the left and the

ED-153 objectives on the top. Each green-coloured box represents one mapping of an

objective to a process of the ISaPro® process model.

6 ED-153 Objective Mapping

48

Table 7: Overview of Mappings within Integrated Process Lifecycle ISaPro
®

7 Safety Versus Agile Principles

49

7 Safety Versus Agile Principles

This chapter deals with the comparison of the principles of safety and agility. These

principles may either result in synergies (see chapter 7.2) or in conflict with each other

(see chapter 7.3). Before these interdependencies can be determined, the basic

principles must be identified (see chapter 7.1). The outputs of this analysis highly

influence the proposed agile procedure model (see chapter 8).

7.1 Evaluation

The basic agile values and principles are relatively easy to determine due to the common

agreement on various approaches in the agile manifesto (see chapter 5.1). Depending on

which approach is chosen, the primary focus is set to a different subset of these values.

For the comparison in Table 8 some of the very central values were chosen.

In the area of safety there is no such agreed common point of view on values or

principles available. There are many different guidelines and standard specifications that

deal with safety issues (see chapter 2.3). Each of them concentrates on slightly different

topics due to their application in different domains or industries. The following standard

specifications have been evaluated for extracting basic safety values and principles,

which can then be compared with the agile ones:

¶ IEC 61508 [IEC10]

¶ DoD MIL-STD-882E [DoD12]

¶ EUROCAE ED-153 [EUROCAE09]

One principle which is covered by many safety standards is that of process orientation.

This is especially the case in ED-153, where all objectives are mapped to processes of a

generic business process framework. In IEC 61508 the safety lifecycle is depicted as a

chain of processes and for the purpose of software, the V-model (see chapter 5.5.1) is

mentioned. This process orientation should ensure a systematic and sequential

approach, which is needed for accomplishing the engineering and safety lifecycle in

parallel and stage by stage (as in the integrated process model ISaPro®; see chapter 4).

This process-driven approach has the advantage that the safety analysis can be

executed based on the entire definition of requirements and design before starting the

implementation. It is necessary to identify all possible hazards and include mitigation

strategies in terms of safety requirements into the definition process. This so-called

>upfront definition< is the second value, which can be assigned to the term of safety.

Another principle which should be fulfilled by using a systematic process and plan-driven

approach is that of evidences. They are of paramount importance to demonstrate to an

external authority that the system or software is safe. This is usually done in the form of a

safety case (see chapter 2.5).

7 Safety Versus Agile Principles

50

In the context of the last two principles, upfront definition and evidences, there are two

other central principles. The first one is documentation, which mainly should ensure the

other principle of traceability. Both are highly supportive of the principle of evidences.

Altogether these previously defined principles contribute to the core principle: the

prevention of accidents that could harm humans or property. Basically it is all about this

single, but very important principle.

Table 8 provides an overview of the principles of safety and agility evaluated in this

chapter. While this is only a rough picture of the two approaches, chapter 7.2 and 7.3 will

identify the synergies and conflicts between them.

Safety Agility

Process Orientation Individuals and Interactions

Upfront Definition Evolving Design

Evidences Simplicity

Documentation Frequent Delivery

Traceability Working Software

Prevention of Accidents Responding to Change

Table 8: Safety versus Agile Principles

After defining and confronting these principles, one basic statement regarding initial

specification can be extracted. Whereas agility recommends doing >as much as

necessary<, safety endorses doing >as much as possible<. Figure 19 depicts these very

different positions in the initial specification phase.

Figure 19: Different Positions on Initial Specification

7.2 Synergies

Although agility and safety seem to be very contrary in some of their attitudes, this section

describes some of the potential sources of synergies between the two approaches. In

Agility
Safety

Initial Specification

7 Safety Versus Agile Principles

51

doing so, this section distinguishes between social factors, process factors and technical

practices.

7.2.1 Social Factors

A first social source of synergy is the definition of a team in agile projects. An agile project

team should ideally be very interdisciplinary in order to be a cross-functional team

[Coh09]. This should avoid frequent handovers of working packages between the

different departments involved [Coh09]. Two of the departments which can benefit from

this principle are the quality management and safety departments. They can dispatch one

of their own experts into the agile project team in order to improve the communication

between development and quality/safety experts. For example, these experts can then

join the planning meeting for the next iteration to contribute to discussions regarding

which topics require further analysis. This kind of collaboration is a lot more interactive

than just carrying out quality and safety tasks based on defined requirements.

7.2.2 Process Factors

Within agile approaches it is common to define the term >done<. This so-called

ñDefinition of Doneò (DoD) specifies the criteria that must be met in order for an iteration

or for a feature/story to be accomplished entirely [Lac12a]. Basically it is a kind of

checklist, showing what tasks have to be done to add verifiable value to the potentially

shippable software product [Coh09]. For a feature this can be defining test cases, writing

code, updating design documents, performing unit tests and many more tasks. Those

checklists on various levels should therefore ensure that no necessary tasks are missing

after completion. This is in line with the requirements on completeness and integrity in

safety-critical environments mandated by standard specifications (e.g. refer to ED-153

objectives 4.3.4 and 5.4.3 in Annex A).

Another enabling process factor is the approach of clarifying technological questions,

preferably at short notice. This is ensured with the definition of stories for technological

studies that could be done within the first iterations in order to get the results and

feedback already at the beginning of the project [WB10]. This should minimise the risks of

adopting new technologies without having a detailed initial design phase. The advantage

of this kind of rapid prototyping is that new technologies are not evaluated and analysed

only within theory but rather by setting up a prototype, which should remediate the lack of

clarity. This is also in line with the agile principle of ñfail fastò [Sho04], which facilitates

failing at an early development stage. Such principles can and should be applied to

functional and design-related issues as well.

Continuous improvement is a central topic in many agile approaches. It is achieved by

using feedback loops on various levels. In Scrum (see chapter 5.3.2) this is done by

reflecting each sprint in a meeting at the end of this particular increment. In addition, the

frequent delivery of software helps to get fast feedback, which is also an input for

improvement. These ideas of continuous improvement are in line with common quality

7 Safety Versus Agile Principles

52

management systems (e.g. ISO 9001 with its Plan-Do-Check-Act Cycle by Deming

[Dem82]), which are required by safety standard specifications as well.

A further central statement of agile approaches is the fact that decisions are made at the

latest possible point in time. This is done because of the assumption that late decisions

are based on a maximum of information [WB10]. It contributes to a maintainable system

due to the fact that simple software solutions are the output of such an approach. There is

no need for complex solutions based solely on uncertainty in order to cover a lot of

alternatives. Safety-critical systems can profit from easier solutions as well, because the

more complexity is added to a software project, the more fault-prone the system is

[CB11]. On the other hand late decisions are in contrast to the upfront definition, which is

demanded by many safety standard specifications. Therefore this principle is also a

potential source of conflict (see chapter 7.3.2).

7.2.3 Technical Practices

One of the technical practices, that of collective code ownership (see chapter 5.2.7),

assumes that the source code is consistently structured and well documented. Otherwise

it would be impossible to manage the source code of software modules on which the

whole team is working. These quality requirements for the code are achieved by working

in compliance with agreed coding styles and guidelines. Code reviews and inspections

support this compliance by verifying the application of the rules. In addition they ensure

the simplicity and maintainability of the software. Such guidelines, reviews and

inspections are usually explicitly required by safety standards (e.g. refer to ED-153

objectives 4.3.10 and 5.6.3 in Annex A) as well and therefore in line with the principles of

safety.

Probably the largest potential for synergy is in the technical practice of test-driven

development (see chapter 5.2.2) including the use of refactoring (see chapter 5.2.3).

Refactoring contributes to meeting the requirement for simple and maintainable code. In

addition it addresses the sceptical point of view regarding the re-use of software caused

by serious accidents in the past (e.g. Therac-25 [LT93]). EUROCAE ED-153, for

example, spends a whole chapter on describing requirements and objectives specifically

for software which was not developed according to the ED-153 guideline. The most

important prerequisite for the refactoring itself is a high test coverage, which therefore

implies a wide range of automated unit, system, integration and acceptance tests

[FBB+99]. This automatically leads to high code coverage, which is especially important in

safety-critical software development. Safety standards like the IEC 61508 or the DO-178B

recommend or even require 100 % code coverage [FAA93, IEC10]. Furthermore these

standards require tests on every level of the software integration including component,

system and acceptance tests.

Working in accordance with the recommendations of test-driven development, where the

tests are written before the code, helps the developer to gather immediate feedback

about the recent implementation [Kos07]. In addition, with continuous integration the tests

automatically answer questions such as whether the recently added code has any impact

7 Safety Versus Agile Principles

53

on any other software component of the whole platform. By using automated tests a level

above as well (e.g. approaches like Acceptance Test Driven Development [Kos07]), unit

tests can even provide validation rather than verification only. Therefore constant and

especially automated testing is essential for a high quality software product. This is based

on the fact that software quality cannot be implemented after the coding phase at the end

of the project lifecycle; at this point it can only be verified [Coh09].

Both practices, refactoring and test-driven development, are especially crucial when a

software system is developed continuously over time, e.g. a software product delivered in

releases over several years. Without refactoring there would be the risk of introducing

faults by changing the software, which would lead to more effort in order to correct them

again. While these corrections can cause new faults, the critical point is reached when

the majority of the development work force is used for corrections instead of

implementing new features (also called the ñMythical Man-Monthò phenomenon [Bro95])

[Mar08].

7.3 Conflicts

While chapter 7.2 describes the synergies between agility and safety, this chapter

analyses the conflicts between them. The potential sources of conflicts arise out of the

agile values themselves, from process factors or technical practices.

7.3.1 Agile Values

The first conflicts arise from the agile manifesto (see chapter 5.1.1) itself. The first

principle of the manifesto states that individuals and interactions are more valued than

processes and tools; this is in contrast to the very process-oriented approaches used in

safety-critical development environments. For example, the ISaPro® approach (see

chapter 4) even has the term of process in its abbreviation. It consists of a combination of

several multidisciplinary processes that ensure the safety of a system. Even the various

objectives of the standard specification EUROCAE ED-153 (see chapter 3) are structured

in processes. Due to the fact that such process models ensure standardised proceedings,

these approaches are widely spread in technological industry. This has positive effects on

the likelihood of forgetting a task that might be important for guaranteeing the safety of a

software product. But this probability can be decreased by using a definition of done as

well (see chapter 7.2.2).

The question is, whether processes and tools will lead to success, even though the

involved individuals and their interaction and communication are not in the focus of the

project manager. Modern project management approaches acknowledge the increasing

importance of individuals. IPMA (International Project Management Association), a

federation of various project management associations, has defined a set of

competences that a project manager should have in order to successfully manage a

project [IPMA06]. A third of these competences are behavioural ones, which deal

extensively with communication and interaction within the project team.

7 Safety Versus Agile Principles

54

The second agile principle, which probably comes into conflict with a safety point of view,

is that working software is more valued than comprehensive documentation.

Documentation is in line with process-oriented approaches, especially when trying to be

compliant with a standard specification. These documents should provide the evidence to

a potential assessor that the principles of developing safe software were considered

according to the requirements and objectives proposed by the standard specifications.

Therefore it is important that documents are written and regularly updated. But of course

without any working software, they are useless. According to Cohn [Coh09],

documentation should not be neglected, but it should rather concentrate on the most

important issues, especially when it is required by standard specifications. Another

speciality of agile methodologies is the approach of writing the documentation as the

team proceeds with their software product, instead of intensely documenting at the

beginning of the project [Lac12a].

Just as documentation is important in the agile world as well as in safety-critical

development, working software for a safety-critical application is important too. One of the

main drivers of the importance of working software is the increasing trend towards

integration of more than one safety-critical software system into a single application

[Kni02]. Even the most accurately described interfaces have to be tested in advance in

order to be sure that the interworking of multiple systems does not cause any failure.

Therefore an early test of the interface is essential where working software is needed.

Another potential conflict might be the agile approach of delivering software every

iteration while the software product is not finished completely. It is definitely not

acceptable to put unfinished and not extensively tested safety-critical software into normal

operation. This paradox is mainly caused by the fact that there is the possibility that not

all of the safety requirements have been implemented so far and that no comprehensive

verification and validation tasks have been done on the software. A possible solution

could be to prioritise the safety requirements in a way that they are always implemented

first.

In order to relativise the strong statement of not delivering any software that has not been

fully verified and validated, it has to be mentioned that in many cases safety-critical

systems are tested operationally as well [FHL+98]. This means that the software is

deployed in a test environment or in a shadow operation mode (e.g. where a backup

system is running in parallel). For this use case of operational tests it is definitely an

advantage to have working software frequently delivered. This will increase the

assurance of a correctly working software product by using the software as it will be used

in the future. In addition to this benefit it allows the development to gather early feedback

from an operational point of view, which could be used in order to adapt the software

system as it is really needed by the end users. Other possibilities could be that

verification and validation are done within the iteration, or in parallel iterations performed

by a dedicated test team. While the first possibility requires a high level of automated

tests, including validation tests, the second can be accomplished as well using partially

manual tests.

The third agile principle values customer collaboration more than contract negotiation.

While this statement does not conflict particularly with the safety principles, it is common

7 Safety Versus Agile Principles

55

in large and complex industrial projects to offer contracts at a fixed price and scope. Such

contracts shift the temporal and financial risks from the customer to the contractor. Due to

the definition of fixed and strong requirements before starting the project, the customer

usually takes the potential risk of the impracticality of the software system. In such

contracts agile methods would probably be an advantage for the customer as well. Using

an agile understanding, the customer has the opportunity in such a situation to reduce

his/her potential risk of impracticality by changing the requirements. Therefore this can

lead to win-win-situations as well. Issues that have to be considered when using agile

approaches in fixed-bid contracts are also central topics in academic researches by

Franklin [Fra08] and Hoda et al. [HNM09].

The definition of customer collaboration within agile approaches includes the availability

of the customer, which means that the client is in the position to decide and prioritise in a

timely manner [Lac12a]. Some of the approaches even require a representative of the

customer, e.g. a business specialist, to participate regularly in local meetings and

discussions at the contractorsô premises [WB10]. Particularly in international projects

these requirements are difficult to meet because of the high costs that this approach

generates on the clientsô side. A possible solution could be the development of the

software project directly on-site, but this vice versa causes costs on the contractorsô side.

A more practical solution in such cases is the nomination of an internal customer

representative who is familiar with the use cases and the needs of the client.

The last agile principle ranks the response to change before following a plan. This

statement is closely linked to the one regarding customer collaboration. Within agile

development methodologies there is of course a set of requirements designed already in

the beginning of the project, but this set is not the final one [WB10]. The requirements in

this set can be prioritised, exchanged, or removed and it is even possible to add new

requirements, when they get identified. This conflicts with the initial phase of the safety

process, where, based on the requirements, the possible hazards of the system are

identified and assessed (see chapter 4.3). As change requests and volatile customer

needs are part of the majority of development projects including safety-critical ones, such

projects and their corresponding safety cases have to respond to change as well.

7.3.2 Process Factors

The fundamental difference between agile and safety-considering approaches is the

procedure model. Whereas approaches required by safety standard specifications lean

heavily on sequential methodologies like the waterfall- or V-model (see chapter 5.5.1), the

agile methodologies are based on an iterative model. This leads to the main problem of

where to include those tasks in the agile iterations which were done in the beginning and

therefore before the coding in a sequential engineering model. These tasks compromise

the definition of all requirements and the development of the design.

According to agile approaches the design has to evolve [Coh09], which implies that the

decision concerning the design is made, when it is actually necessary. This decision is

therefore taken shortly before the coding for the corresponding requirement is started

7 Safety Versus Agile Principles

56

based on the maximum of available information [WB10]. This is contrary to safety

approaches, where the complete design for the whole software project has to be finished

before starting to code. This is necessary in order to verify within the preliminary system

safety evaluation (see chapter 4.3.3) and software safety design analysis (see chapter

4.3.5) that all safety requirements are considered in the system and software design and

that the design does not cause any harm by itself.

There are also some arguments against an up-front design [PM02]. First of all there are

the high costs for this initial phase and secondly the requested changes, which will

appear occasionally, are quite expensive because of reworking the initial fixed design

[Els07]. This reworking can be done either by going back to the start of the analysis

phase in order to complete the specification or by conducting impact assessments which

identify and specify the effects on all previously generated process outputs. In contrast to

that, there is the agile approach, where plenty small changes have to be done over the

whole project cycle. But these can be accomplished relatively cost-efficiently due to the

use of test-driven development including refactoring and automated tests [Coh09, Els07].

It is important to mention that an evolving design has some prerequisites. Due to the fact

that there will be rework in the code based on changes in the design, it is necessary that

the code is well factored (see chapter 5.2.3) and that there is a suite of automated tests

(see chapter 5.2.2) in order to detect regression problems at an early stage. [Coh09]

Basically, agile projects have to find a balance between anticipation and adaption

[Coh09]. Anticipation reflects the principles of up-front gathering of requirements, design

and front-end project planning. In contrast to anticipation, adaption stands for

incremental, emerging requirements, design and continuous planning [Hig02]. The

appropriate balance for projects is somewhere in between those two extremes. Safety-

critical software will very likely be positioned more on the anticipative side in contrast to

other software projects. The more the project is based on anticipation, the earlier is there

the need for a defined, complete list of system requirements. The disadvantage of this

early list is that there are often requirements specified which are skipped or modified

during the projectôs progress [Coh09].

According to agile literature it is possible to have a dedicated software architect in the

team [Coh09, Joh03], although this is actually not intended for an agile team, where every

team member is responsible for all the tasks within the scope of software development.

The software architect should support the person responsible for managing the

prioritisation of the requirements or stories (e.g. the product owner in Scrum) in order to

bring in architectural issues and interests. This results in a combination, where the

prioritisation is done under the premise of customer and technical needs. Ambler et al.

[AL12] calls such an agile software architect an ñarchitecture ownerò.

